MANUAL ON
REQUIRED NAVIGATION PERFORMANCE (RNP)

SECOND EDITION — 1999

Approved by the Secretary General
and published under his authority

INTERNATIONAL CIVIL AVIATION ORGANIZATION
AMENDMENTS

The issue of amendments is announced regularly in the *ICAO Journal* and in the monthly *Supplement to the Catalogue of ICAO Publications and Audio-visual Training Aids*, which holders of this publication should consult. The space below is provided to keep a record of such amendments.

RECORD OF AMENDMENTS AND CORRIGENDA

<table>
<thead>
<tr>
<th>AMENDMENTS</th>
<th>CORRIGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Date applicable</td>
</tr>
<tr>
<td>No.</td>
<td>Date of issue</td>
</tr>
<tr>
<td>1</td>
<td>1/3/01</td>
</tr>
<tr>
<td></td>
<td>8/2/02</td>
</tr>
<tr>
<td>2</td>
<td>17/1/03</td>
</tr>
</tbody>
</table>

(ii)
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Purpose of manual</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Explanation of terms</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Concept and application of required navigation performance</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>RNAV operations within the RNP concept</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>Airspace use</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Aircraft performance</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>RNP service provisions</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>General provisions of required navigation performance</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>Elements of RNP containment</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>RNP types</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Airspace requirements</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Airspace where RNP applies</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>Airspace characteristics</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>Airspace requirements</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Aircraft requirements</td>
<td>12</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>5.2</td>
<td>Functional requirements</td>
<td>13</td>
</tr>
<tr>
<td>5.3</td>
<td>System performance</td>
<td>14</td>
</tr>
<tr>
<td>5.4</td>
<td>System design, construction and installation</td>
<td>20</td>
</tr>
<tr>
<td>5.5</td>
<td>Airworthiness approval of RNAV/FMS equipment</td>
<td>20</td>
</tr>
<tr>
<td>5.6</td>
<td>Operational approval of RNAV/FMS equipment</td>
<td>21</td>
</tr>
<tr>
<td>5.7</td>
<td>Reference documents</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Required navigation performance operations</td>
<td>23</td>
</tr>
<tr>
<td>6.1</td>
<td>Provision of navigation services</td>
<td>23</td>
</tr>
<tr>
<td>6.2</td>
<td>Training requirements</td>
<td>25</td>
</tr>
<tr>
<td>6.3</td>
<td>Special radiotelephony procedures for RNP operations</td>
<td>26</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>Explanation of terms</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Rationale for the choice of RNP values</td>
<td>30</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Estimating navigation performance accuracy</td>
<td>34</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Reference documentation related to area navigation</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>ICAO guidance material for the development of a required navigation performance 10 (RNP 10) operational approval process</td>
<td>42</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 GENERAL

1.1.1 The Special Committee on Future Air Navigation Systems (FANS) identified that the method most commonly used over the years to indicate required navigation capability was to prescribe mandatory carriage of certain equipment. This constrained the optimum application of modern airborne equipment. Also, with satellites becoming available, this method would impose a laborious selection process by the International Civil Aviation Organization. To overcome these problems, the committee developed the concept of required navigation performance capability (RNPC). FANS defined RNPC as a parameter describing lateral deviations from assigned or selected track as well as along track position fixing accuracy on the basis of an appropriate containment level. Although this concept avoids the need for ICAO selection between competing systems from the beginning, it does not prevent ICAO from dealing with navigation techniques that are in use internationally. The RNPC concept was approved by the ICAO Council and was assigned to the Review of the General Concept of Separation Panel (RGCSP) for further elaboration. The RGCSP, in 1990, noting that capability and performance were distinctively different and that airspace planning is dependent on measured performance rather than designed-in capability, changed RNPC to required navigation performance (RNP).

1.1.2 The RGCSP then developed the concept of RNP further by expanding it to be a statement of the navigation performance necessary for operation within a defined airspace. A specified type of RNP is intended to define the navigation performance of the population of users within the airspace commensurate with the navigation capability within the airspace. RNP types are identified by a single accuracy value as envisaged by FANS.

1.1.3 System use accuracy is based on the combination of the navigation sensor error, airborne receiver error, display error and flight technical error. This combination is also known as navigation performance accuracy.

1.1.4 The RNP types specify the navigation performance accuracy of all the user and navigation system combinations within an airspace. RNP types can be used by airspace planners to determine airspace utilization potential and as an input in defining route widths and traffic separation requirements, although RNP by itself is not sufficient basis for setting a separation standard.

1.1.5 RNP types specify the minimum navigation performance accuracy required in an airspace. It is evident that an aircraft with a less accurate type of RNP would normally be excluded from airspace with more stringent requirements or, alternatively, may be allocated increased separation minima. If appropriately equipped, an aircraft with a level of navigation performance more accurate than that specified can fly in the airspace concerned (e.g. RNP 1 certified aircraft operating in RNP 4 airspace). There may be occasions, however, when for example an aircraft’s level of navigation performance accuracy may meet the requirement of a more stringent RNP airspace, based on the navigation aid (navaid) infrastructure, but might not meet the requirements of a less stringent RNP airspace due to the lack of aids appropriate to its navigation equipment fit, e.g. RNP 1 certified aircraft based on dual distance measuring equipment (DME), may not be fitted with appropriate long-range aids to enable operation in RNP 12.6 airspace.

1.2 PURPOSE OF MANUAL

The basic purpose of this guidance material is to explain the concept and provisions of RNP, identify how RNP affects the system providers and system users, and provide regional planning groups with a basis for the development of documents, procedures and programmes to introduce RNP into the airspace. This manual supersedes the Manual of Area Navigation (RNAV) Operations (Doc 9573) and contains all relevant material from that document.

1.3 EXPLANATION OF TERMS

Development and explanation of RNP relies on the understanding of some particular terms. Explanations of these terms are included in Appendix A.
Chapter 2
CONCEPT AND APPLICATION OF REQUIRED NAVIGATION PERFORMANCE

2.1 GENERAL

2.1.1 The continuing growth of aviation places increasing demands on airspace capacity and emphasizes the need for the optimum utilization of the available airspace. These factors, allied with the requirement for operational efficiency in terms of direct routings and track-keeping accuracy, together with the enhanced accuracy of current navigation systems, have resulted in the concept of RNP.

2.1.2 RNP as a concept applies to navigation performance within an airspace and therefore affects both the airspace and the aircraft. RNP is intended to characterize an airspace through a statement of the navigation performance accuracy (RNP type) to be achieved within the airspace. The RNP type is based on a navigation performance accuracy value that is expected to be achieved at least 95 per cent of the time by the population of aircraft operating within the airspace.

2.1.3 The development of the RNP concept recognizes that current aircraft navigation systems are capable of achieving a predictable level of navigation performance accuracy and that a more efficient use of available airspace can be realized on the basis of this navigation capability.

2.1.4 Several factors may affect States’ decisions as to which approval type (e.g. RNP 1, RNP 4) will be required along various air traffic services (ATS) routes for particular procedures, or in various areas. Area navigation (RNAV) equipment approval should address protected airspace where separation is predicated on ATS route widths.

2.1.5 Other types of navigation (which may or may not be based on RNAV) should, for an interim period, be permitted using conventional VOR/DME-defined ATS routes in accordance with international agreements reached for a particular region or State.

2.2 RNAV OPERATIONS WITHIN THE RNP CONCEPT

2.2.1 It is anticipated that most aircraft operating in the future RNP environment will carry some type of RNAV equipment. The carriage of RNAV equipment may even be required in some regions or States. This guidance material therefore makes frequent reference to the use of RNAV equipment. In order to receive approval to operate in an RNP environment, RNAV equipment should be required to provide at least the capabilities and features (or their equivalents) applicable to the appropriate RNP type as listed in section 5.2 of this manual.

2.2.2 Chapter 5 of this manual provides detailed guidance for defining operational and functional requirements applicable to the use of RNAV equipment in RNP environments. The guidance material is intended to ensure that RNP and related RNAV capabilities are implemented in a uniform and harmonized manner on a global basis. The operational and functional requirements should consequently be applicable to all RNAV-equipped aircraft intending to operate within airspace for which RNP has been prescribed by States or on the basis of regional air navigation agreement.

2.2.3 RNAV equipment operates by automatically determining the aircraft position from one or more of a variety of inputs. Distances along and across track are computed to provide the estimated time to a selected way-point, together with a continuous indication of steering guidance that may be used, for example, in a horizontal situation indicator (HSI). In some States, accuracy requirements are such that RNAV equipment must either be coupled or capable of being coupled to the autopilot. A wide range of associated navigation data can also be obtained.

2.2.4 RNAV operations within the RNP concept permit flight in any airspace within prescribed accuracy tolerances without the need to fly directly over ground-
based navigation facilities. This guidance material is primarily related to the use of RNAV equipment for en-route phases of flight.

2.2.5 The application of RNAV techniques in various parts of the world has already been shown to provide a number of advantages over more conventional forms of navigation and to provide a number of benefits, including:

a) establishment of more direct routes permitting a reduction in flight distances;

b) establishment of dual or parallel routes to accommodate a greater flow of en-route traffic;

c) establishment of bypass routes for aircraft overflying high-density terminal areas;

d) establishment of alternatives or contingency routes on either a planned or an ad hoc basis;

e) establishment of optimum locations for holding patterns; and

f) reduction in the number of ground navigation facilities.

There is a need to ensure compatibility with requirements that may be specified for other phases of flight and the potential also exists to utilize RNP for the establishment of optimum arrival/departure routes and approaches; all of these benefits are advantageous to States, air traffic service (ATS) providers and users.

2.3 AIRSPACE USE

Defining RNP airspace

2.3.1 RNP may be specified for a route, a number of routes, an area, volume of airspace or any airspace of defined dimensions that an airspace planner or authority chooses. Potential applications of RNP include:

a) a defined airspace, such as North Atlantic minimum navigation performance specifications (MNPS) airspace;

b) a fixed ATS route, such as between Sydney, Australia and Auckland, New Zealand;

c) random track operations, such as between Hawaii and Japan; and

d) a volume of airspace, such as a block altitude on a specified route.

2.3.2 An RNP type should be selected in order to meet requirements such as forecast traffic demand in a given airspace. This required navigation performance will determine the necessary level of aircraft equipage and airspace infrastructure.

Applying RNP in an airspace

2.3.3 Ideally, airspace should have a single RNP type; however, RNP types may be mixed within a given airspace. An example would be a more stringent RNP type (DME-DME) being applied to a specific route in a very high frequency (VHF) omnidirectional radio range (VOR)/DME airspace or a less stringent RNP type applied to a specific airspace.

2.3.4 RNP can apply from take-off to landing with the different phases of flight requiring different RNP types. As an example, an RNP type for take-off and landing may be very stringent whereas the RNP type for en-route may be less demanding.

2.3.5 Discussions of RNP types and application to airspace are provided in Chapters 3 and 4.

Relation of RNP to separation minima

2.3.6 RNP is a navigation requirement and is only one factor to be used in the determination of required separation minima. RNP alone cannot and should not imply or express any separation standard or minima. Before any State makes a decision to establish route spacing and aircraft separation minima, the State must also consider the airspace infrastructure which includes surveillance and communications. In addition, the State must take into account other parameters such as intervention capability, capacity, airspace structure and occupancy or passing frequency (exposure).** A general methodology for determining separation minima has been developed by the RGCSP.***

* These examples are not exhaustive; they show but a few ways to apply RNP.

** See ICAO Circular 120 — Methodology for the Derivation of Separation Minima Applied to the Spacing between Parallel Tracks in ATS Route Structures.

2.3.7 RNP is a fundamental parameter in the determination of safe separation standards. Figure 2-1 graphically represents broad categories of the fundamental parameters to be considered when envisaging a separation standard change. Figure 2-1, in basic terms, shows that the risk of collision is a function of navigation performance, aircraft exposure, and the airspace system’s ability to intervene to prevent a collision or maintain an acceptable level of navigation performance. An increase in traffic in a particular airspace can result in airspace planners considering a change in airspace utilization (e.g. separation minima, route configuration) while maintaining an acceptable level of risk. In collision risk analysis, this acceptable level of risk is referred to as the target level of safety (TLS). Other metrics may be used for different types of analyses. Once the separation criteria and the TLS are determined, a minimum level of performance can be set for the airspace system parameters of navigation and intervention.

2.4 AIRCRAFT PERFORMANCE

2.4.1 The concept of RNP is based on the expected navigation performance accuracy of the population of aircraft using the airspace. This in turn places demands on individual aircraft, manufacturers of aircraft and aircraft operators to achieve the navigation performance required for a specific RNP type airspace on each flight. The RNP concept may also require different aircraft functional capabilities in different types of RNP airspaces. As an example, an RNP airspace with a high accuracy requirement may have functional requirements for parallel offset capability, whereas a less accurate RNP airspace may only require point-to-point navigation capability.

2.4.2 RNP aircraft requirements are presented in Chapter 5.

2.5 RNP SERVICE PROVISIONS

2.5.1 Since RNP is defined by a statement on navigation performance, there is an obligation on the part of the State and the aircraft operator to provide the necessary equipment to achieve the required navigation performance accuracy and associated functional requirements.

2.5.2 The State must ensure that services (i.e. communications, navigation and surveillance (CNS)) within a given airspace provide safe separation for a defined set of separation standards. The aircraft operator (and State of Registry) must in turn ensure that the aircraft intending to operate in a specified RNP airspace is equipped to achieve the required navigation performance. It should be noted that compliance with RNP requirements can be achieved in many different ways and neither the State nor the aircraft operator is restricted as to how RNP is achieved, as long as it can be demonstrated that the requirements can be met.

2.5.3 RNP operations are presented in Chapter 6.

Figure 2-1. Airspace characteristics that affect separation standards

\[\text{Risk of collision} = f(\text{navigation} + \text{route configuration} + \text{traffic density} + \text{surveillance} + \text{communications} + \text{ATC}) \]
Chapter 3
GENERAL PROVISIONS OF REQUIRED NAVIGATION PERFORMANCE

3.1 GENERAL

The implementation of RNP allows enhancement of ATS system capacity and efficiency while at the same time retaining or improving established system safety. The types of RNP were developed to provide known levels of accuracy for navigation and to support planning for the development of airspace designs, air traffic control procedures and operational procedures. States should determine and make known the means by which the performance can be met within the designated airspace.

3.2 ELEMENTS OF RNP CONTAINMENT

3.2.1 RNP types are specified by airspace planners to establish the total navigation system error (TSE) allowed in the horizontal dimension (lateral and longitudinal) when operating within a defined airspace or on a designated route:

a) in the lateral dimension, the TSE is assumed to be the difference between the true position of the aircraft and the centre line of the route of flight programmed in the navigation system; and

b) in the longitudinal dimension, the TSE is assumed to be the difference between the displayed distance to a specified way-point and the true distance to that point.

3.2.2 In the lateral dimension, the TSE is a combination of the following factors:

a) navigation system error;

b) RNAV computation error;

c) display system error; and

d) flight technical error (FTE).

3.2.3 In the longitudinal dimension, the TSE is a combination of the following factors:

a) navigation system error;

b) RNAV computation error; and

c) display system error.

3.2.4 In establishing that an aircraft can navigate to a specific RNP, the lateral and longitudinal (cross-track and along-track) dimensions must be evaluated independently and it must be shown that the TSE in each dimension must not exceed the specified RNP type for 95 per cent of the flight time on any portion of any single flight.

Note.— If the TSE is determined by analysing radial error, then this approach must be equivalent to the requirements in 3.2.4.

3.2.4.1 The following is provided as an example: if the specified RNP type is 1.85 km (1 NM), the approval process must show that the TSE in each dimension must not exceed the specified RNP type for 95 per cent of the flight time on any portion of any single flight:

a) the true position of the aircraft must be within 1.85 km (1 NM) of the programmed route centre line; and

b) the true distance to way-points must be within 1.85 km (1 NM) of the displayed distance to way-points.

3.2.5 No consideration is currently given to time or vertical navigation for the purpose of establishing RNP types for en-route operations. Vertical navigation en route will be based on barometric altimetry for the foreseeable future. If this changes, it may be necessary to consider vertical performance in the classification criteria.
3.3 RNP TYPES

General

3.3.1 In order to simplify RNP types and to make the required accuracy readily apparent to airspace planners, aircraft manufacturers and operators, the RNP type is specified by the accuracy value associated with the RNP airspace.

RNP types

3.3.2 Table 3-1 specifies five RNP types required for general application to en-route operations. These are RNP 1, 4, 10, 12.6 and 20, which represent accuracies of plus or minus 1.85 km (1.0 NM), 7.4 km (4.0 NM), 18.5 km (10 NM), 23.3 km (12.6 NM) and 37 km (20 NM), respectively. The rationale for the choice of RNP values is given in Appendix B.

3.3.3 RNP 1 is envisaged as supporting the most efficient ATS route operations by providing the most accurate position information, and through the use of RNAV allowing the greatest flexibility in routing, routing changes and real-time response to system needs. This classification also provides the most effective support of operations, procedures and airspace management for transition to and from the aerodrome to the required ATS route.

3.3.4 RNP 4 supports ATS routes and airspace design based on limited distance between navaids. This RNP type is normally associated with continental airspace.

3.3.5 RNP 10 supports reduced lateral and longitudinal separation minima and enhanced operational efficiency in oceanic and remote areas where the availability of navigation aids is limited.

3.3.6 RNP 12.6 supports limited optimized routing in areas with a reduced level of navigation facilities.

3.3.7 RNP 20 describes the minimum capability considered acceptable to support ATS route operations. This minimum level of performance is expected to be met by any aircraft in any controlled airspace at any time. Airspace operations or procedures based on capabilities less than those of RNP 20 would not be implemented except in special circumstances.

3.3.8 More demanding RNP types would be required for operations in the vicinity of most aerodromes, i.e. during the transition between aerodrome and ATS route. The possibility of extending the RNP concept to terminal operations is being assessed by ICAO.

3.3.9 Some States may need to implement RNP 5 for an interim period as a derivative of RNP 4, in order to permit the continued operation of present navigation equipment without modification of existing route structures.

3.3.10 Account should be taken of the fact that, in individual States where the navigation accuracy currently achieved for the main fleet of aircraft exceeds the RNP 4 requirements and independent radar monitoring systems are used to monitor the movement of aircraft, a corridor width of ±5 km (±2.7 NM) will continue to be used.

Time frame for RNP implementation

3.3.11 The primary means of achieving RNP is by the use of RNAV equipment which is already in widespread use. Many States and regions are developing considerable experience in such aspects of RNAV operations as airworthiness and operational approvals, airspace planning.

Table 3-1. RNP types — general application

<table>
<thead>
<tr>
<th>RNP type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±1.85 km (±1.0 NM)</td>
</tr>
<tr>
<td>4</td>
<td>±7.4 km (±4.0 NM)</td>
</tr>
<tr>
<td>10</td>
<td>±18.5 km (±10 NM)</td>
</tr>
<tr>
<td>12.6</td>
<td>±23.3 km (±12.6 NM)</td>
</tr>
<tr>
<td>20</td>
<td>±37 km (±20.0 NM)</td>
</tr>
</tbody>
</table>
aircraft separation and route spacing requirements, user techniques, training, publicity and information exchange. Furthermore, RNP 4, RNP 10, RNP 12.6 and RNP 20 have been selected in light of the navigation accuracy currently achievable in various regions, and they can therefore be readily implemented. Full exploitation of RNP 1 will, however, require that a high percentage of the aircraft population be equipped to meet that level of performance. Some operators, therefore, will need to invest in new equipment in order to fully realize the benefits of RNP 1 operations. For these reasons, it is considered that an evolutionary implementation of RNP is necessary and feasible.
Chapter 4
AIRSPACE REQUIREMENTS

4.1 AIRSPACE WHERE RNP APPLIES

RNP could apply to all phases of flight. The five RNP types specified in 3.3.2 to 3.3.10 were developed for general application. It is expected that more stringent RNP values will be needed for operations in the vicinity of most aerodromes. The possibility of defining RNP types applicable to terminal operations, including approach, landing and departure phases of flight, is being assessed by ICAO.

4.2 AIRSPACE CHARACTERISTICS

4.2.1 RNP may be applied to ATS routes, including fixed and contingency routes.

Fixed RNP routes

4.2.2 Fixed RNP routes are permanent, published ATS routes which can be flight-planned for use by aircraft approved for a specific RNP type. Restrictions in the times of availability and flight levels are not precluded.

4.2.3 Fixed RNP routes should begin and end at promulgated reporting points, not necessarily defined by ground facilities. Way-points should be established along fixed RNP routes as required by States.

Contingency RNP routes

4.2.4 Contingency RNP routes are published ATS routes which can be flight-planned and which can be made available to aircraft approved for a specific RNP type during limited time periods (hours, days, seasons). They may also be established to meet unusual, temporary requirements arising at short notice.

4.2.5 The guidance on way-points given for fixed RNP routes in 4.2.3 is also appropriate for contingency RNP routes.

RNP area

4.2.6 RNP can apply to an area or a volume of airspace, or any airspace of defined dimensions. Within a defined RNP area, authorities may choose to require a specific RNP type approval for ATS routes.

4.2.7 Additionally, when approved by the State or the appropriate ATC authority, unpublished tracks (i.e. random tracks) may be flight-planned within designated and published RNP areas. They may be permitted:

- a) in specified flight information regions or upper flight information regions or in areas laterally defined by geographic coordinates; and
- b) during specified periods; and/or
- c) within specified flight level bands.

RNP coordinate system

4.2.8 As navigation systems evolve from station-referenced to earth-referenced, an important consideration is the geodetic datum used for determination of actual position.

4.2.9 Geodetic datums are used to establish the precise geographic position and elevation of features on the surface of the earth. They are established at various levels of administration (international, national and local) and form the legal basis for all positioning and navigation. At present, there are many geodetic reference systems in use throughout the world which result in different latitude/longitude definitions of the same point on the ground, according to which system is used. Differences of several hundreds of metres are apparent in some areas of the world and the implications for aircraft flying under
RNP conditions are such that errors of this magnitude may not always be tolerated, especially in terminal areas. Moreover, specific problems may also arise in en-route operations, for example, when aircraft are transferred between area control centres of adjacent countries where different geodetic reference datums are in use. Similarly, aircraft flight management system (FMS) software could employ a different geodetic reference datum from that used to locate ground-based navigation aids (e.g. DME), or earth-referenced navigation aids such as the global navigation satellite system (GNSS). Flight test trials have attributed significant errors to the use of different geodetic reference datums in simulated high-precision RNP environments.

4.2.10 ICAO has chosen the World Geodetic System — 1984 (WGS-84) as the common world geodetic datum as there is a need to:

a) convert coordinates of airport key positions and ground-based navigation aids to a common geodetic reference datum;

b) ensure that all such locations are surveyed to a common standard that provides optimum accuracy, such as that obtained by GNSS surveying techniques; and

c) ensure that all FMS software is referenced to a common geodetic datum.

4.2.11 The ultimate responsibility for the accuracy of position data for aviation use rests with States; however, a collective effort will be required to implement WGS-84 on a global basis before earth-referenced systems can be adopted for all classes of air navigation.

4.3 AIRSPACE REQUIREMENTS

Navigation performance accuracy

Normal performance

4.3.1 RNP is intended to characterize an airspace through a statement of the navigation performance accuracy (RNP type) to be achieved within the airspace during normal flight operations.

4.3.2 If it is necessary for ATC to intervene, to prevent an aircraft from straying from its cleared route, e.g. due to aircraft system failure, navaid out-of-tolerance conditions or blunder errors, sufficient assistance should be provided to enable the aircraft to regain the route centre line and/or proceed to the next way-point.

ATS procedures in RNP airspace

Normal procedures

4.3.3 ATS procedures in RNP airspace will generally be the same as existing ATS procedures and those planned to better utilize RNAV capability.

Special procedures

4.3.4 RNP airspace may have different functional requirements for different RNP types. Such functional requirements are presented in 5.2. As an example, one functional requirement of an RNP type airspace may be the capability to fly offset from the planned route centre line by a specified distance; this is known as the parallel offset. This function can be a very useful tool for ATC in both strategic and tactical situations. In a tactical situation, an offset may be employed instead of radar vectoring in certain circumstances, such as to facilitate an uninterrupted climb or descent. In a strategic situation, a systematic offset may be employed as a means of increasing capacity without impairing safety in the airspace. Details, such as offset distance, turn performance, etc., may need to be covered in regional or ATS inter-facility agreements. Further details on parallel offset functions may be found in 6.1.7 to 6.1.9.

Procedures for transit between different types of RNP airspace

4.3.5 Since there are a number of RNP types and potential applications, careful consideration should be given to the development of transit procedures between different types of RNP airspace. Consideration should be given, but not confined, to the method of accomplishing this transit. This requires detailed planning, including, inter alia:

a) determining the specific points where the traffic will be directed as it transits from an RNP type airspace with a more stringent accuracy to an RNP type airspace with a less stringent accuracy;

b) testing the plan through simulation, once plans for the transit have been formulated;

c) clearing only aircraft approved for operations in specific RNP type airspace; and
d) coordinating with all concerned in order to obtain a regional agreement detailing the required responsibilities.

Flight crew contingency procedures within RNP airspace

4.3.6 The flight crew should notify ATC of contingencies (equipment failures, weather conditions) that affect its ability to maintain navigation accuracy, state its intentions, coordinate a plan of action and obtain a revised ATC clearance.

4.3.7 If unable to notify ATC and obtain an ATC clearance prior to deviating from the assigned flight path, the flight crew should follow established contingency procedures as defined by the region of operation and obtain ATC clearance as soon as possible.

ATC contingency procedures

4.3.8 ATC should be made aware whenever it is impossible for an aircraft to maintain its navigation performance accuracy appropriate to the RNP airspace being used.

4.3.9 Air traffic controllers should take appropriate action to provide increased separation, as well as to coordinate with other ATC units as appropriate, when informed that the flight is not able to maintain the required navigation performance accuracy.
Chapter 5

AIRCRAFT REQUIREMENTS

5.1 GENERAL

5.1.1 There are many different types of navigation equipment currently available that will meet the requirements of one or more RNP types. This equipment covers a wide range of capability and sophistication. The VOR/DME navigation systems and simple RNAV computer systems which can only accept VOR/DME inputs are the least sophisticated of the equipment. The somewhat more complex types of RNAV equipment using inputs such as inertial navigation system (INS) or LORAN-C must also be considered for approval for use, provided that special operating procedures are applied or additional navigation fixes used to ensure that the required navigational accuracy may be maintained. The most sophisticated equipment is seen in the advanced RNAV and FMS with which an increasing number of aircraft are fitted.

5.1.2 The FMS is an integrated system consisting of airborne sensor, receiver and computer with both navigation and aircraft performance databases that provides optimum performance guidance to a display and automatic flight control system, but the term is often used to describe any system which provides some kind of advisory or direct control capability for navigation (lateral and/or vertical), fuel management, route planning, etc. These systems are also described as performance management systems, flight management control systems and navigation management systems. In this guidance material, FMS is used in a generic sense and is not intended to imply any one specific type of system. It is essential to note that, while it is the responsibility of operators to determine the scope of the database used in an FMS, the level of accuracy and thoroughness of the source material on which databases rely are the responsibility of States. Database providers have a responsibility to ensure that they accurately reproduce the source material as provided by States.

5.1.3 Navigation computers are also available for retrofit to existing aircraft. These can be operated in conjunction with INS, LORAN-C or simply with VOR/DME plus air data (heading, true airspeed, etc.). Even with the latter input only, the system can operate accurately as long as the aircraft remains within adequate DME cover; gaps in DME coverage and/or accuracy are acceptable within predefined limits as the system is capable of operating in “memory mode” for limited periods.

5.1.4 Airborne navigation equipment encompasses:

a) systems which use external navigation aids such as VOR/DME, DME/DME, GNSS, LORAN-C; and

b) systems which are self-contained, e.g. INS, or inertial reference systems.

5.1.5 General operational limitations. Due to the availability and integrity of the various sensor systems, effects of propagation and bias errors, and potential interference with certain sensors from outside sources, certain operational limitations must be imposed on the use of some types of area navigation equipment installations. These general limitations are as follows:

a) Operational areas. The operator should define the area(s) in which operations are intended and ensure that equipment installations are capable of meeting the RNP for those areas; and

b) Operational equipment. LORAN-C, VOR/DME and INS without acceptable automatic position updating may not be capable of serving as stand-alone RNAV equipment installations, except when shown to meet the appropriate RNP requirements.

5.1.6 System availability and continuity. Navigation systems should be required to demonstrate an acceptable availability and continuity of function prior to approval. National authorities may choose to rely on a redundancy of systems in order to obtain the system availability required. Navigation function availability may be assured by the use of multisensor area navigation systems which incorporate various position-fixing sensors, each of which is individually usable for airborne area navigation. Some RNAV systems permit the use of combinations of systems or pilot selection of one system in preference to another, depending on factors such as reception and weather conditions.
Note.— The term “continuity of function” as used in this paragraph refers to an assurance that, through a combination of sensors or equipage, guidance information permitting navigation to the appropriate level of RNP will continue to be provided for an acceptable period of time after the loss of a sensor.

5.1.7 Operators have the responsibility to ensure the required level of performance within the notified RNP environment by means of appropriate RNAV equipment installations and prescribed procedures and training for the flight crew. Where appropriate, national authorities should provide a means for operators to identify relevant levels of accuracy, integrity and availability for RNP for RNAV routes or procedures.

5.1.8 Procedures and/or capabilities should enable erroneous flight crew inputs to be detected before the aircraft position accuracy can be degraded.

5.1.9 For RNP operations the following equipment provisions need to be considered:

a) RNP 1 and better:
 — the equipment should provide a means to confirm reasonableness of sensor input data before the equipment uses the data; and
 — the equipment should be able to compute an estimate of its position error, depending on the sensors being used and time elapsed.

b) RNP 4, 10, 12.6 or 20:
 — the provisions in a) are desirable.

5.1.10 The airworthiness and operational approval of this equipment will rest with the national aviation administration concerned. States may also need to amend legislation to reflect the use of approved RNAV and FMS equipment for operations in RNP airspace.

5.2 FUNCTIONAL REQUIREMENTS

General

5.2.1 This section is an overview of the essential functions which RNAV equipment should be required to perform. The functions listed below should be viewed as the minimum acceptable level of performance. Commentaries describing the function and the requirements for the applicable RNP types are defined, and detailed information can be found in the RNP Minimum Aviation System Performance Standards (MASPS), contained in RTCA document DO-236A and EUROCAE document ED-75.

5.2.2 Navigation equipment should be capable of enabling aircraft to be navigated within the constraints of the air traffic service to the accuracy required in a promulgated RNP type of airspace. It is anticipated that most aircraft operating in the future RNP environment will carry some type of RNAV equipment. The carriage of RNAV equipment may be required in some regions or States. This guidance material therefore makes frequent reference to the use of RNAV equipment.

System functions

5.2.3 In order to give the flight crew control over the required lateral guidance functions, RNAV equipment should at least be able to perform the following functions:

a) display present position in:
 1) latitude/longitude; or
 2) distance/bearing to selected way-point;

b) select or enter the required flight plan through the control display unit (CDU);

c) review and modify navigation data for any part of a flight plan at any stage of flight and store sufficient data to carry out the active flight plan;

d) review, assemble, modify or verify a flight plan in flight, without affecting the guidance outputs;

e) execute a modified flight plan only after positive action by the flight crew;

f) where provided, assemble and verify an alternative flight plan without affecting the active flight plan;

g) assemble a flight plan, either by identifier or by selection of individual way-points from the database, or by creation of way-points from the database, or by creation of way-points defined by latitude/longitude, bearing/distance parameters or other parameters;

h) assemble flight plans by joining routes or route segments;
i) allow verification or adjustment of displayed position;

j) provide automatic sequencing through way-points with turn anticipation. Manual sequencing should also be provided to allow flight over, and return to, way-points;

k) display cross-track error on the CDU;

l) provide time to way-points on the CDU;

m) execute a direct clearance to any way-point;

n) fly parallel tracks at the selected offset distance; offset mode should be clearly indicated;

o) purge previous radio updates;

p) carry out RNAV holding procedures (when defined);

q) make available to the flight crew estimates of positional uncertainty, either as a quality factor or by reference to sensor differences from the computed position;

r) conform to WGS-84 geodetic reference system (as from 1998); and

s) indicate navigation equipment failure.

Desired functions

5.2.4 High-density airspace may require development of specific RNAV functions in order to provide the operational capability to meet increasing demand. Whilst responding to necessary regional needs, the development of these functions should be conducted with close coordination between manufacturers, users and ATC service providers, taking into account actual and expected state-of-the-art-technology. Such cooperation should allow progressive global harmonization of the operational use of RNAV equipment. Some of the RNAV functions which are expected to be applicable to RNP include the following:

a) generate command signal outputs for autopilot/flight director;

b) display and report of 3D and 4D position data;

c) indicate track angle;

d) display way-point reference data in 3D and 4D;

e) provide a minimum of 10 active en-route way-points;

f) provide a minimum of 20 active terminal/approach way-points;

g) indicate way-point approach by alert lights/visual display;

h) provide automatic navigation aids (navaids) selection, integrity check, reasonableness check, manual override or deselect;

i) comply with turn performance requirements; and

j) indicate loss of required navigation accuracy or integrity, and appropriate failure annunciation for the system, including relevant sensors.

5.3 **SYSTEM PERFORMANCE**

Navigation accuracy requirements

5.3.1 RNAV and FMS equipment with the appropriate sensors may be approved by States for navigation in designated RNP airspace. Steps are being taken in a number of States to amend national legislation to permit the use of properly installed, approved and maintained RNAV and FMS equipment for this purpose.

Way-points

5.3.2 A way-point is geographically defined in terms of two or three dimensions. Way-point location is necessary in the computation of navigation information. For operations in RNP 1 or RNP 4 environments the following criteria should apply:

a) RNP 1:

 — a way-point should be identified by name (if available in the database) or location (latitude/longitude); and

 — equipment should be able to construct a route of at least ten way-points. The way-point input storage and retrieval resolution capability should be consistent with the required system use accuracy.
b) RNP 4, 10, 12.6 and 20:

— bearing and distance from another defined point or by other means will suffice, provided the required level of navigation performance accuracy can be demonstrated; and

— equipment should provide at least the capability to manually enter the coordinates of four (4) way-points to a resolution consistent with the required system use accuracy.

Route execution

5.3.3 RNAV systems should provide the required navigation and position fixing accuracy for all ground speeds up to the maximums achievable for the aircraft in which it is installed. They should provide usable navigation information necessary during the execution of turns, including holding patterns.

5.3.4 For RNP operations the following accuracy should be achieved:

a) RNP 1:

— a system use accuracy equal to or better than 0.93 km (0.5 NM), one standard deviation; and

— a 95 per cent containment of plus or minus 1.85 km (1 NM).

b) RNP 4:

— a system use accuracy equal to or better than 3.7 km (2.0 NM), one standard deviation; and

— a 95 per cent containment of plus or minus 9.26 km (4 NM).

5.3.5 Cross-track deviation:

a) a continuous display of displacement from the intended track or position should be provided by RNAV systems in all RNP environments; and

b) the display resolution should be consistent with the requirements of the RNP operation being flown.

5.3.6 Automatic way-point sequencing: in all RNP environments, where appropriate, and at a point determined by the RNAV system, the system should automatically transfer to, or communicate the need for the flight crew to transition to, the next leg.

5.3.7 Automatic flight control system outputs:

a) the requirements for RNAV guidance should be provided by displaying cross-track deviation as specified in 5.3.5; and

b) way-point distance and desired track should be provided.

5.3.8 Turn anticipation:

a) the system should be provided with turn anticipation capabilities to enable a smooth transition between tracks within the limits of accuracy detailed in 5.3.4; and

b) the system should provide means to alert the flight crew prior to arrival at a way-point to permit turn anticipation in accordance with the requirements of 5.3.24.

Route planning and construction of flight plan

5.3.9 The system should allow the construction and/or modification of a flight plan. The methods for doing this may consist of the following:

a) insertion of individual way-points and related data;

b) the selection of individual way-point data from the database;

c) the extraction of routes or portions of routes from a database; and

d) a means should be available by which the flight crew can determine the correctness of the flight plan.

5.3.10 For RNP operations the equipment should provide the following:

a) RNP 1:

— a means for the insertion or modification of data in the flight plan;

— a navigation database and a means to verify selected way-points should be available; and

— maintain system use accuracy during and after modification of the flight plan.
b) RNP 4, 10, 12.6 and 20:

— a means for the insertion or modification of data in the flight plan; and

— if the system has a navigation database, a means to verify selected way-points should be available.

5.3.11 For routes requiring specific functional capabilities (5.6.3 e refers), including ATS routes requiring controlled turns, the applicable route or procedure to be flown must be automatically loaded into the FMS flight plan from the FMS database and verified by the flight crew.

In-flight updating of flight plans

5.3.12 The flight crew should be able to verify the suitability of the data in respect of the flight plan being flown and the stored database at any time without the guidance and navigation display being affected. Route data, if used, should include the names or coordinates of the way-points and should include the related distances and tracks. The present track and distance to go to the next way-point should be provided.

5.3.13 The flight crew should be able to modify the flight plan at any time. When a ground-air data link is used, positive input action should still be required on the part of the flight crew.

Note.— The above should be provided for both RNP 1 and RNP 4 operations.

Navigation confidence

5.3.14 The system should be designed to reject incorrect inputs before the accuracy of the computed position can be impaired; this should be achieved by using redundancy of information to increase the reliability of the guidance output with a minimum of flight crew intervention. Moreover, the rejection level of the installation must be appropriate to the demands of the airspace, and manufacturers should incorporate as many consistency checks as possible in order to protect filters and guidance output.

Navigation database

5.3.15 A navigation database should consist of current navigation reference data officially promulgated for civil aviation use, and contain at least navigation aid and way-point information covering the region of intended operation, and ATS routes. The ability to store a number of flight plans should be provided. For RNP operations the following criteria should apply:

a) RNP 1:

— an internal database or other operationally suitable method of navigation data entry and storage should be provided. This should be sufficient for storage of standard navigation aid information (e.g. VORTAC and DME) and way-point information required for the flight plan and alternates. This data should include ATS routes when applicable;

— data integrity should be assured by provisions for clear identification of all changes to navigation information used in each navigation database version and for the determination of the correctness of the changes incorporated into the navigation database;

— the flight crew should be able to verify that a valid database has been correctly loaded;

— the database validity period should be available for display to the flight crew; and

— the data resolution should support the required system use accuracy.

b) RNP 4, 10, 12.6 and 20:

— a navigation database is optional. If provided, it should conform to the requirements for RNP 1.

Navigation data coordinate system

5.3.16 In order to assure that airborne and ground systems are based on the same reference system, navigation should be based upon the application of the WGS-84 geodetic reference system for all RNP types. All coordinates provided in a navigation database should be in the WGS-84 reference system or equivalent.

Tuning and selection of navigation aids

5.3.17 Those systems employing inputs from VORs and/or DME should provide the capability of automatic
selection and tuning of DME and/or VOR channels in accordance with acceptable procedures and related aircraft position and database requirements.

5.3.18 The system should be capable of selecting aids which will provide acceptable navigation accuracy and of selecting alternative aids if appropriate. The selected frequencies and/or aid to air navigation (navaid) ICAO identifiers used should be available for display to the flight crew.

5.3.19 The flight crew should be able to inhibit individual navaids from the automatic selection process. It should be possible to manually tune a navaid facility for display of the navaid data, if such a capability is needed to support the specified RNP. For RNP operations the following criteria should apply:

a) RNP 1:

— aids should only be selected for application in those areas where it can be ensured that data cannot be corrupted by another aid operating on the same frequency or in an area where topographical features normally would not cause multi-path errors;

— for multi-sensor navigation, the system should ensure geometry consistent with the required system use accuracy; and

— the system should provide the capability to automatically select navaids (if applicable).

b) RNP 4, 10, 12.6 and 20:

— it should be possible to manually inhibit a navaid facility; and

— the features described in 5.3.16, 5.3.17 and 5.3.18 are optional.

Navigation mode(s) and annunciation

5.3.20 The RNAV system should present sufficient information to allow determination that the equipment is functioning properly. This should include an indication of sensors being used or the method of position fixing. It is also necessary that degraded navigation be brought to the attention of the flight crew.

5.3.21 Navigation information should initially be provided or be re-established within the time period defined by the appropriate authority as acceptable for the relevant RNP.

5.3.22 For RNP operations the following criteria should apply:

a) For RNP 1 operations:

— the flight crew should be able to determine the navigation mode and/or the expected system use accuracy. The system should provide a warning of a degradation of system use accuracy below that required; and

— following degradation, the flight crew should be able to determine the remaining capability necessary to satisfy non-normal navigation requirements consistent with the RNP used.

b) RNP 4, 10, 12.6 and 20:

— a means should be provided to enable the flight crew to monitor navigation mode and position.

Position display

5.3.23 The computed aircraft position should be available for display in terms of present latitude and longitude and/or range and bearing of the aircraft to or from the active or other way-points selected by the flight crew. The equipment should enable the flight crew to provide ATC present track and distance to and from any way-point in the flight plan.

Turn performance

5.3.24 Where traffic demand necessitates the provision of a dense network of RNP 1 routes, (e.g. closely spaced parallel routes), ATS providers may require a controlled turn performance in order to ensure that aircraft remain within the allowable tolerances of RNP 1 routes during turn manoeuvre(s) of 30 to 90 degrees.

5.3.25 RNAV systems operating in an RNP 1 environment should execute turns such that the aircraft should remain within the following limits:

a) RNP 1:

— during operations on ATS routes or in areas notified exclusively for RNP 1-approved aircraft, the equipment should enable an aircraft to maintain a position within 1.85 km (1 NM) of its ATC-cleared position for 95 per cent of the total flying time;
— where the ATS route(s) notified for RNP 1 operations require controlled turns of 30 to 90 degrees, a fixed radius, as depicted in Figure 5-1, will be specified by the ATS route designator and included for all turns on the RNP 1 ATS route in accordance with Annex 11, Appendix 1. The aircraft should remain within the allowable RNP 1 tolerance of the tangential arc specified by the radius between the straight leg segments; and

— where the turn parameters are not specified, the equipment should determine the turn performance.

b) RNP 4, 10, 12.6 or 20:

— provide a capture to the next track in such a manner as to minimize overshoot; and

— provide the ability to accomplish turns of up to 90 degrees of course change, with or without offset, without exceeding the turning area envelope shown in Figure 5-2. Procedural techniques may be an acceptable means of meeting this requirement.

Parallel offsets

5.3.26 RNAV systems may provide the ability to fly parallel tracks offset by up to 37 km (20 NM) from the primary track defined by the way-points. The selection of an offset and the offset distance should be continuously indicated:

a) tracks offset from the parent track should be continued for all ATS route segments and turns until either removed by the flight crew or removed
automatically by, e.g. amending the active flight plan, joining an RNAV hold, or when there is a course change of 90 degrees or greater.

b) the cross-track offset distance should be inserted via the RNAV control and display unit (CDU) in steps not greater than 1.85 km (1 NM).

c) the offset facility is desirable for RNP 4, 10, 12.6 and 20 operations.

d) parallel offset capability should be provided for RNP 1 operations. Where parallel offset capabilities are used, the performance specified in 5.3.4 a) should be maintained referenced to the offset track. Turns between the inbound and outbound offset tracks should be executed such that the aircraft remains within the limits defined in 5.6.3 e) for 95 per cent of its flight time.

5.3.27 Entry and recovery from offsets. The intercept angle between a parent track and an offset track should be 45 degrees or less to minimize the risk for track overshoot.

Figure 5-2. Turning area envelope

5.3.28 Direct-to function:

a) RNAV systems should have the capability of establishing a direct track to any selected way-point position; and

b) for all RNP operations, the execution of the aircraft track change should enable the interception of the direct leg without excessive overshoot of the new track.

5.3.29 Holding:

a) where provided, the system should, with the minimum of flight crew intervention, be capable of initiating, maintaining and discontinuing standard holding procedures at all altitudes;

b) for RNP 1 operations, the facility for maintaining and discontinuing an RNAV hold should be provided. The system navigation performance during both straight legs and turns should be in accordance with 5.3.3 to 5.3.8; and
c) for RNP 4, 10, 12.6 and 20 operations, the provision of RNAV holding capability is desirable.

5.3.30 Bearing/distance to way-point(s):

a) RNAV equipment should be capable of determining and presenting for display on request the present position of the aircraft in relation to selected way-point(s) in terms of distance, track and flying time along the active flight plan; and

b) RNAV equipment for any RNP operation should provide the capability to display distances and bearings to way-points. The equipment should enable the flight crew to provide ATC with the distance to (or from) any way-point up to a distance of at least 1 848 km (999 NM), and to provide ATC with the course to or bearing from any way-point in 1 degree increments.

5.3.31 When an ATS route notified exclusively for RNP 1 operation includes a requirement for controlled turns, this should be indicated through an alphabetic suffix to the ATS route designator in accordance with Annex 11, Appendix 1, 2.4. It should be noted that the controlled turn radii specified in Annex 11 are based on aircraft manufacturers’ recommendations derived from studies considering the capabilities, including maximum ground speed and maximum bank angle at different levels, of various aircraft types.

5.4 SYSTEM DESIGN, CONSTRUCTION AND INSTALLATION

5.4.1 Each aircraft should have navigation equipment that enables it to proceed in accordance with its operational flight plan and the requirements of air traffic services.

5.4.2 The design and construction of navigation equipment should conform to the appropriate design standards, including national variants.

5.4.3 Navigation equipment should be installed in accordance with instructions and limitations provided by the manufacturer of the equipment.

5.4.4 These instructions and limitations should include, but not be limited to, location of controls and system displays, warning and advisory indications, power supplies, failure protection, environmental conditions, electromagnetic interference, P-static protection, P-static charging/discharging and anti-ice protection.

Monitoring

5.4.5 System self-monitoring. For all RNP operations, RNAV systems should be designed to perform a continuous automatic self-test of position computation performance. Should performance fall below the required system use accuracy, the flight crew should be made aware in order that ATC may be informed.

5.4.6 Sensor monitoring. If a significant sensor error is detected and automatic reconfiguration possibilities have been exhausted, a warning should be displayed to the flight crew and the equipment should ignore the position derived from an out-of-tolerance sensor. Provision should be made to identify and deselect the discrepant sensor.

5.4.7 Alert outputs. For all RNP operations, alert outputs should be provided for the following:

a) equipment failures;

b) reversion to supplementary or non-standard modes of navigation; or

c) loss of the capability to support a specified RNP.

Measure of navigation system performance

5.4.8 A navigation system performance indicator should be determined by systems meeting RNP requirements, giving information on the quality and accuracy of navigation performance. This should be available to the flight crew.

Data link interface

5.4.9 While there are no current ATS requirements for RNAV equipment to provide a data link interface, the Note below is provided for information purposes.

Note.—It is expected that ATC data link services will be progressively implemented in RNAV systems. In the future, there may be a requirement to provide information for transmission via data link.

5.5 AIRWORTHINESS APPROVAL OF RNAV/FMS EQUIPMENT

5.5.1 Since RNAV and FMS aircraft installations are subject to airworthiness approval by the national aviation administration concerned, it is not practicable to detail the
procedures adopted by individual States. In general terms, the information submitted to support an application for approval will need to be sufficient to permit an assessment to be made of the acceptability of the equipment/system for its intended use. Furthermore, evidence of the testing carried out to demonstrate the navigation performance accuracy appropriate to the RNP type will be required. Moreover, where the system is intended for use in designated areas for which airworthiness approval would be required, the information must adequately reflect the relevant airworthiness considerations that would affect the aircraft’s ability to comply with the operational requirements for flight within such designated airspace.

5.5.2 Appropriate RNAV equipment will have to be certified for use in all phases of flight. Specific information relating to the various sensors providing input to the RNAV equipment is found in the respective national or regional material. The initial certification of RNAV equipment requires a technical evaluation to verify such criteria as accuracy, failure indications and environmental qualifications appropriate to the relevant RNP type. Subsequent installations of the same RNAV equipment system in other aircraft may require additional technical evaluation, depending on the degree of integration of the system with other aircraft systems. A technical evaluation will be necessary to change RNP type approval.

5.5.3 While the navigation performance accuracy is the basis for defining an RNP type, the other navigation performance parameters of availability, coverage, reliability, fix rate, fix dimension, capacity, time to recover and integrity determine the utilization and limitations of the individual navigation systems, both ground and airborne, and characterize the means by which a user derives navigation information within an RNP type airspace, as described in Appendix C. Numerical values for these parameters will be quantified by the appropriate technical bodies.

5.6 OPERATIONAL APPROVAL OF RNAV/FMS EQUIPMENT

5.6.1 The State of the Operator will be the authority responsible for approval of flight operations in the various RNP type airspaces. The approving authority will ensure that the aircraft has equipment installed and operating in a manner appropriate to the RNP type approval being sought. The equipment users’ manual should also include any airworthiness limitations associated with use of the equipment. At least the following items should be considered:

a) accuracy limitations associated with geographical location, availability of radio navigation facilities or reversionary modes (e.g. manual tuning or dead reckoning (DR) operation);

b) system status required for compliance with published operational requirements (RNP type);

c) limitations associated with use of VOR/DME-defined ATS routes, where RNAV equipment or FMS is not approved as the primary means of navigation;

d) limitations, including those associated with take-off, terminal and approach phases of flight;

e) essential monitoring procedures; and

f) limitations and procedures associated with abnormal operations (e.g. electrical power interruption and recovery, system warnings, engine inoperative performance data) and the minimum equipment list (MEL).

5.6.2 The approving authority must be satisfied that operational programmes are adequate. Training programmes and operations manuals should be evaluated.

5.6.3 The approving authority should have a high degree of confidence that each operator can maintain the appropriate levels of RNP. The following minimum requirements apply:

a) approval should be granted for each individual operator, as well as for each individual aircraft type group/equipment (manufacturer/model) utilized by the operator;

b) each aircraft type group utilized by an operator should be shown to be capable of maintaining navigation performance accuracy relevant to the RNP type approval being sought;

c) each aircraft carrying RNAV/flight management systems should receive airworthiness approval in accordance with 5.5 prior to being reviewed for operational approval. The authorities granting operational approval should evaluate the airworthiness documents for each aircraft type group/equipment (manufacturer/model). In most cases the airworthiness documents are expected to give the authority confidence that navigation performance will meet the required levels. In certain cases, it may be necessary for the operator to prove RNP for
the aircraft type by flight test. It will be necessary for approving authorities to develop procedures to grant operational approval;

d) if in-service experience shows that the navigation performance of a particular aircraft type utilized by an operator does not meet the requirements, the operator should be required to take steps to improve navigation performance to required levels. If performance is not improved, operational approval for the aircraft type should be withdrawn from that operator. In cases where navigation performance is observed to be grossly in error, approval should be withdrawn immediately; and

e) during operations on ATS routes or in areas notified exclusively for RNP 1-approved aircraft, the equipment should enable an aircraft to maintain a position within 1.85 km (1 NM) of its ATC-cleared position for 95 per cent of the total flying time and, where the ATS route(s) notified for RNP 1 operations require controlled turns of 30 to 90 degrees, a fixed radius, as depicted in Figure 5-1, will be specified by the ATS route designator and included for all turns on the RNP 1 ATS route in accordance with Annex 11, Appendix 1. The aircraft should be required to remain within the allowable RNP 1 tolerance of the tangential arc specified by the radius between the straight leg segments. If unspecified, the equipment should determine the turn performance.

5.7 REFERENCE DOCUMENTS

Appendix D contains a list of references to examples of specific rules pertaining to RNAV operations, including equipment approval requirements and procedures.
Chapter 6
REQUIRED NAVIGATION PERFORMANCE OPERATIONS

6.1 PROVISION OF NAVIGATION SERVICES

State of service obligation

General

6.1.1 The concept of RNP involves the navigation performance accuracy that must be maintained by an aircraft operating within a particular area or on a particular route. Since required levels of navigation performance vary from area to area depending on traffic density and complexity of the tracks flown, States have an obligation to define an RNP type of their airspace(s) to ensure that aircraft are navigated to the degree of accuracy required for air traffic control. States of service should ensure that sufficient nav aids are provided and available to achieve the chosen RNP type(s) and should provide the relevant information to operators. Providers of air traffic services therefore should also consider the parameters in Appendix C (i.e. availability, coverage, reliability, fix rate, fix dimension, capacity, ambiguity, time to recover and integrity) in the navigation aids they provide. Appendix C also provides navigation system descriptions for a variety of navigation systems.

6.1.2 The levels of sophistication in CNS vary widely throughout the world. In turn, ATC separation minima which are used to safely separate aircraft operating within a specified area are dependent on the CNS capability within the airspace. In establishing an RNP airspace or route, it will be necessary to define the separation minima or minimum protected airspace that applies. The RGCSP is developing a methodology to interrelate CNS, traffic density and other parameters in order to develop airspace separation minima.

6.1.3 The lateral and vertical dimensions of the airspace in which the RNP types are implemented must be defined and promulgated in appropriate national and regional documentation. When an RNP type is defined for a route, the lateral dimensions with respect to the route centre line must be defined.

ATC for RNP airspace

6.1.4 General. For the definition of ATC for RNP airspace, it is necessary to distinguish between the following:

a) RNP fixed and contingency routes; and

b) RNP areas, including random tracks.

6.1.5 ATC for RNP fixed and contingency routes. From an ATC point of view, it is considered that existing ATC techniques and equipment can continue to be used for RNP fixed or contingency ATS routes. It is possible that closely spaced parallel tracks will be introduced, or routes will be established close to airspace currently reserved for other purposes. In such cases, some form of alert in case of track deviation or conflict may be necessary.

6.1.6 ATC for RNP areas, including random tracks. In the case of applying random tracks in RNP areas, an increasing need for changes to the ATC system will arise, as:

a) in areas of low traffic density the amount of change may be small, but account will have to be taken of flight plan processing, conflict detection and resolution;

b) in areas of higher traffic density, ATC computer systems will have to accept and process flight plan data concerning random navigation (4.2.7 refers). Air traffic controllers must be able to easily amend and update the relevant flight plan information in the computer system. Prediction and display of potential conflicts at the planning stage may be required; and

c) radar control may also require conflict alert and resolution, including selectable presentation of track prediction. ATC will require a method of showing the latitude and longitude of key crossing points on the predicted track. This might simply be
displayed in terms of position in relation to a grid or by automatic readout of the latitude and longitude or name code.

ATC use of parallel offset

6.1.7 As a tactical tool to solve separation problems, ATC may require aircraft to fly offset from the planned route centre line by a specified distance (parallel offset). It would be employed instead of radar vectoring.

6.1.8 When wishing to exploit the tactical parallel offset capability of RNAV-equipped aircraft, controllers must ensure that the aircraft has the offset capability as part of its RNAV system. They must also apply the same level of prudence in its application as they would for radar vectoring. Although the execution of the manoeuvre and the subsequent navigation of the aircraft remains the responsibility of the pilot, continuous ATC surveillance will also be required for such operations.

6.1.9 When choosing offset values it is important that these are compatible with approved separation minima. The chosen value should allow sufficient latitude for controller intervention in the event of deviations from cleared tracks and will also be dependent upon availability of system functions such as short-term conflict alert or automatic check of track adherence.

Flight plan requirements

Route designator

6.1.10 RNP routes should be assigned a suitable route designator in accordance with the provisions of Annex 11. Additionally, the specific RNP type(s) applicable to a particular route segment(s), route(s) or area should be included after the route number, e.g. ATS route A576 between Auckland, Sydney, Curtin Bali and Singapore, could involve the nomination of a variety of RNP types, such as A576 (1), A576 (4), A576 (12.6) or A576 (20).

6.1.11 In airspace such as the North Atlantic, or an area designated for random track operations, where the same RNP type would probably apply on all routes, it may be preferable to indicate the applicable RNP type by means of an appropriate note on a chart.

6.1.12 This approach would enable pilots and ATS staff to readily identify the RNP type applicable to a particular route segment(s), route(s) or area, and would provide a sufficient degree of flexibility to easily amend RNP types or to introduce any new RNP types that might be specified in the future.

Indicated navigation capability

6.1.13 It is essential that ATS receive information that a flight, planned for operation along routes or through RNP areas, has the required navigation capability. The appropriate procedures and formats are contained in Procedures for Air Navigation Services — Rules of the Air and Air Traffic Services (PANS-RAC, Doc 4444), Appendix 2, Item 10.

Introducing RNP into an airspace

6.1.14 It will be necessary for national administrations to evolve to the WGS-84 geodetic reference system and develop a process for identifying national reference data for use in flight management system (FMS) databases. National administrations should be required to have this geodetic reference system in place prior to the effective date of RNP operations. Manufacturers, operators and database suppliers, in the meantime, should be responsible to ensure that RNAV systems are able to transition to the WGS-84 system or equivalent.

6.1.15 National administrations should be aware that conversion of coordinates from their current reference system to WGS-84 will require application of quality control in respect of the surveys which might be necessary and the conversion process itself.

6.1.16 The following aspects should be considered in order that RNP might be introduced by States and regions on an evolutionary basis:

a) availability of technical means of compliance, e.g. aircraft equipage and ground infrastructure;

b) lead time for installation of elements of the airborne systems;

c) availability of appropriate levels of communication and surveillance;

d) lead time for the development and implementation of regional transition plans;

e) current situation regarding studies, research and development for the more demanding levels of RNP;

f) existence of standards and procedures;

g) airspace demand requirements;

h) availability of airworthiness and operational approval procedures;
Chapter 6. Required Navigation Performance Operations

i) technical means to permit continued reduced separation at national and regional boundaries;

j) desirability of real-time/fast-time simulation facilities in support of reduced separation standards;

k) airspace/sectorization design requirements;

l) lead time for education/training;

m) lead time for publication requirements;

n) cost/benefit considerations; and

o) amendment of State legislation.

State of the Operator obligation

6.1.17 The following is intended as an example for use by States and operators to ensure that properly fitted, maintained and operated aircraft will have an operational navigation performance equal to or better than the required accuracy.

6.1.18 Navigation equipment utilized is the choice of the operator. The essential provision is that the equipment meets the level of navigation performance established for each specific RNP type. The following points need to be borne in mind:

a) operators must seek approval from their State (i.e. the State of the Operator). The operator must show (considering factors unique to the proposed area of operation) that safe operation can be conducted within the area of operation, and that the facilities and services necessary to conduct the operation are available and serviceable during the period when their use is required;

b) before approval is granted, the operator should provide assurance that the type of equipment is of proven reliability and performance. Information on the airworthiness aspect is as in 5.4;

c) although it may be assumed that all approved equipment should be capable of operating to specified RNP accuracy requirements, the operational procedures play an important part in achieving the desired performance. It is also important that the operating environment be taken into account. The approval process could include the examination of:

1) procedures (normal and abnormal) taking into account the characteristics of the equipment and its specific requirements for verification, updating and cross-checking of computed position information and steering commands;

2) the adequacy of the coverage of ground navaids (if applicable) and the dead-reckoning capability to cover gaps;

3) navigation database update arrangements (if applicable);

4) flight crew training arrangements;

5) maintenance procedures after navigation discrepancy reports; and

6) flight, operations and training manuals; and

d) States should define an appropriate administrative procedure in order to:

1) avoid an overload of their approval services; and

2) minimize expenditures for operators.

6.1.19 Advantage could be taken of the experience in other States by use of cross-approval procedures and of a standardized manual of operations.

6.2 TRAINING REQUIREMENTS

General

6.2.1 It will be the responsibility of the relevant State authorities to ensure that adequate provision is made for the training of flight crew and air traffic controllers in RNP operations.

6.2.2 Experience has shown that activities such as RNAV implementation seminars have helped facilitate the efficient introduction of RNAV separation minima in particular regions by informing pilots, operators and air traffic control personnel of the various requirements. Consideration should therefore be given to conducting RNP seminars to facilitate the introduction of RNP operations within a State or region.
Flight crew training

6.2.3 The training requirements of operators in respect of equipment and operating procedures should be adequately covered in the relevant operations and training manuals, where available.

6.2.4 As a minimum, States should include training in equipment and operating procedures in pilots’ training syllabi, such as instrument ratings, aircraft type ratings and refresher training. The training should ensure that flight crews:

a) have a general knowledge of the application of RNP;

b) have a thorough understanding of the equipment;

c) are aware of its limitations;

d) have been trained in the operating procedures and safeguards necessary to obtain optimum efficiency and maintenance of required navigational accuracy;

e) are in current practice and have received recent training on the equipment;

f) appreciate the need to advise ATC should the accuracy of their navigation be in doubt; and

g) are conversant with contingency procedures.

ATC training

6.2.5 From the ATC point of view, the handling of traffic along RNP fixed and contingency routes will not be changed significantly.

6.2.6 The introduction of RNP areas including random tracks may bring about changes to the operation of ATC which would make it essential for additional training to be provided, taking into account matters such as:

a) potentially different RNP type routes in the same sector;

b) transition between different RNP type areas;

c) radiotelephony (RTF) procedures (see 6.3);

d) revised military/civil and civil/civil co-ordination procedures;

e) conflict prediction and resolution along unpublished tracks; and

f) revised contingency procedures.

6.2.7 As more sophisticated navigation applications become more widely used (e.g. parallel offset capability, RNAV standard instrument departures (SID), and standard instrument arrivals (STAR), holding and approaches), their integration into ATC procedures will require that controllers are trained to accept and exploit the use of these advanced capabilities.

6.3 SPECIAL RADIOTELEPHONY PROCEDURES FOR RNP OPERATIONS

The en-route application of RNP should not necessitate a complete set of new RTF phraseologies. Many circumstances can be adequately dealt with by using existing phraseology as promulgated in the PANS-RAC (ICAO Doc 4444), if properly adapted.
Appendix A
EXPLANATION OF TERMS

Accuracy. The degree of conformance between the estimated or measured position and/or the velocity of a platform at a given time and its true position or velocity. Radio navigation performance accuracy is usually presented as a statistical measure of system error and is specified as:

a) Predictable. The accuracy of a position in relation to the geographic or geodetic coordinates of the earth.

b) Repeatable. The accuracy with which a user can return to a position whose coordinates have been measured at a previous time with the same navigation system.

c) Relative. The accuracy with which a user can determine one position relative to another position regardless of any error in their true positions. (RTCA/DO-208, Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using GPS)

Along-track error (ATRK). A fix error along the flight track resulting from the total error contributions. (Derived from RTCA/DO-208)

Ambiguity. System ambiguity exists when the navigation system identifies two or more possible positions of the vehicle, with the same set of measurements, with no indication of which is the most nearly correct position. The potential for system ambiguities should be identified together with a provision for users to identify and resolve them. (FRP)

Area navigation (RNAV). A method of navigation that permits aircraft operation on any desired flight path.

Area navigation equipment. Any combination of equipment used to provide RNAV guidance. (RNP GM)

Availability. Availability is an indication of the ability of the system to provide usable service within the specified coverage area and is defined as the portion of the time during which the system is to be used for navigation during which reliable navigation information is presented to the flight crew, autopilot, or other system managing the flight of the aircraft. (Derived from RTCA/DO-208)

Capacity. The number of system users that can be accommodated simultaneously. (FRP)

Circular protected area (CPA). A circular area of protected airspace, centred on the desired position of an aircraft.

Note.— This area is based on the specified navigation performance requirements, e.g. RNP, and ATC intervention (communication and surveillance) capabilities.

Containment limit (cross-track/along-track). A region about an aircraft’s desired position, as determined by the airborne navigation system, which contains the true position of the aircraft to a probability of 99.999 per cent.

Note.— The cross-track and along-track containment limit encompasses the specified RNP, containment integrity and containment continuity, but excludes allowance for ATC intervention (communication and surveillance) capabilities.

Containment value (containment distance). The distance from the intended position within which flights would be found for at least ninety-five per cent of the total flying time.

Coverage. The coverage provided by a radio navigation system is that surface area or space volume in which the signals are adequate to permit the user to determine position to a specified level of accuracy. Coverage is influenced by system geometry, signal power levels, receiver sensitivity, atmospheric noise conditions and other factors that affect signal availability. (RTCA/DO-208)

Cross-track error. The perpendicular deviation that the aircraft is to the left or right of the desired track. (Derived from RTCA/DO-208)
Display errors (display system error). These errors may include error components contributed by any input, output or signal conversion equipment used by the display as it presents either aircraft position or guidance commands (e.g. course deviation or command heading) and by any course definition entry device employed. For systems in which charts are incorporated as integral parts of the display, the display system error necessarily includes charting errors to the extent that they actually result in errors in controlling the position of the aircraft relative to a desired path over the ground.

To be consistent, in the case of symbolic displays not employing integral charts, any errors in way-point definition, directly attributable to errors in the reference chart used in determining way-point positions, should be included as a component of this error. This type of error is virtually impossible to handle, and in general practice, highly accurate, published way-point locations are used to the greatest extent possible in setting up such systems to avoid such errors and reduce workload.

Earth-referenced navigation (ERN). Navigation which is dependent on an external navigation source or inertial reference system (IRS) but is not dependent on a single fixed site. ERN may use either time or phase differences from hyperbolic radio navigation systems or satellite sources with geodetic datums to determine position (normally converted latitude and longitude) on the surface of the earth. LORAN-C and GPS are different forms of ERN. (RTCA/DO-208)

En-route operations. Operations conducted on published ATS routes, direct point-to-point operations between defined way-points or along great circle routes which are other than take-off, landing, departure, arrival or terminal operations.

Fix dimension. A characteristic which defines whether the navigation system provides a linear, one-dimensional line of position, or a two- or three-dimensional position fix. The ability of the system to derive a fourth dimension (i.e. time) from the navigational signals is also included. (FRP)

Fix rate. The number of independent position fixes available from the system per unit of time. (FRP)

Flight management system (FMS). An integrated system, consisting of airborne sensor, receiver and computer with both navigation and aircraft performance databases, which provides performance and RNAV guidance to a display and automatic flight control system. (RTCA/DO-208)

Flight technical error (FTE). The accuracy with which the aircraft is controlled as measured by the indicated aircraft position with respect to the indicated command or desired position. It does not include blunder errors. (RTCA/DO-208)

Note.—For aircraft that are not capable of autopilot or flight director coupling, an FTE of 3.7 km (2 NM) for oceanic operations must be taken into account in determining any limitations.

FRP. (United States) Federal Radionavigation Plan.

GNSS. Global navigation satellite system.

GPS. Global positioning system.

Integrity. The ability of a system to provide timely warnings to users when the system should not be used for navigation. (RTCA/DO-208)

Manoeuvre anticipation. Time and distance from a way-point at which path changes are initiated in order to transition to a new course. (RTCA/DO-208)

Navigation. The means by which an aircraft is given guidance to travel from one known position to another known position. (RTCA/DO-208)

Navigation guidance. The calculation of steering commands to maintain the desired track from the present aircraft position to a new position. (RTCA/DO-208)

Navigation information. Aircraft parameters such as position, velocity vector and related data such as track angle, ground speed and drift angle used for navigation guidance. (Derived from RTCA/DO-208)

Navigation performance accuracy. The total system error (TSE) allowed in the individual lateral and longitudinal dimensions. TSE in each dimension must not exceed the specified RNP type for 95 per cent of the flight time on any single flight. (See 3.2).

Navigation system error (NSE). This is the root-sum-square (RSS) of the ground station error contribution, the airborne receiver error and the display system contribution.

Parallel offset path. A desired track parallel to and left or right of the “parent” track specified in nautical miles of offset distance. (RTCA/DO-208)
Path definition error (PDE). The difference between the defined path and the desired path at a specific point and time.

Position estimation. The difference between true position and estimated position.

Reliability. A function of the frequency with which failures occur within the system. The probability that a system will perform its function within defined performance limits for a specified period under given operating conditions. Formally, reliability is one minus the probability of system failure. (FRP)

Required navigation performance (RNP). A statement of the navigation performance necessary for operation within a defined airspace.

Note.— Navigation performance and requirements are defined for a particular RNP type and/or application.

Route spacing. The distance between air traffic services (ATS) route centre lines.

Note.— This distance is based on the specified navigation performance requirements, e.g. required navigation performance (RNP), and air traffic control (ATC) intervention (communication and surveillance) capabilities.

Sensor. A unit capable of providing information for use by the RNAV or FMS.

Station-referenced navigation. Position determination which is referenced to a particular source. (RTCA/DO-208)

Supplemental air navigation system. An approved navigation system that can be used in conjunction with a sole-means navigation system. (RTCA/DO-208)

System use accuracy. The combination of the navigation sensor error, airborne receiver error, display error and flight technical error. Also called navigation performance accuracy. (Derived from RTCA/DO-208)

Terminal area operations. Operations conducted on published standard instrument departures (SIDs), or published standard instrument arrivals (STARs), or other flight operations whilst under terminal control.

Time to alarm. The maximum allowable elapsed time from the start of system failure (i.e. alarm limit) until the time that the integrity alarm is annunciated.

Time to recover navigation. The time required for restoration of navigation service after signal interruption.

Total system error. In the lateral dimension, a combination of navigation system error, RNAV computation error, display system error and FTE. TSE = \sqrt{(NSE)^2 + (FTE)^2}. In the longitudinal dimension, a combination of navigation system error, RNAV computation error, and display system error. (See section 3.2 and Appendix C (Estimating Navigation Performance Accuracy)).
Appendix B

RATIONALE FOR THE CHOICE OF RNP VALUES

1. The RGCSP recognized that the RNP requirement for precise navigation (i.e., RNP 1) reflected the capabilities of aircraft flying with advanced navigation systems, such as those which utilize updates from multiple DME transponders, and dynamically select the transponders whose geometric positions, in relation to the aircraft, yield the most accurate solution.

2. The RGCSP also accepted the characterization of basic RNP (i.e., RNP 4) as reflecting the lateral track-keeping accuracies expected from aircraft navigating by VOR. While it expected the 95 per cent containment value of 7.4 km (4 NM) to be applied in most cases in which basic continental performance is appropriate, the panel also recognized that some regions may prefer to liberalize the requirement to allow 95 per cent containment of 9 km (5 NM) in certain airspaces.

3. In choosing other RNP values, the RGCSP relied on an approach that analyzes the probability that aircraft flying along adjacent parallel routes would have laterally overlapping positions. This probability was expressed as a function of four variables:

 a) \(S \), the spacing between the routes;

 b) \(\lambda_1 \), which was \(\times \frac{\sqrt{2}}{2} \) (the standard deviation of typical lateral errors) or, equivalently, about 1/3 of the 95 per cent containment distance;

 c) \(\alpha \), which approximated the rate at which large errors occur; and

 d) \(\lambda_2 \), which was approximately \(\times \frac{\sqrt{2}}{2} \) (the standard deviation of the distribution of large lateral errors).

4. Overlap probabilities computed in the analysis used fixed values of \(\alpha \) and \(\lambda_2 \) found to prevail in North Atlantic airspace (the only oceanic airspace for which reliable data were available); but the computed probabilities were not, in themselves, central to the RGCSP’s conclusion.

5. The analysis also fixed several values of route separation \(S \) and, for each of them, plotted the lateral overlap probability as a function of the 95 per cent containment distance (see Figures B-1 and B-2; a summary of these figures is given in Table B-1). Each of the plotted

<table>
<thead>
<tr>
<th>Route spacing</th>
<th>Conservative RNP</th>
<th>Liberal RNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>(\alpha = 0.0003)</td>
<td>(\alpha = 0.0008)</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>110</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>148</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>185</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>222</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Note.— It is immediately clear from this table that the conservative candidates are approximately 1/6 of the corresponding route separations, while liberal candidates are approximately 1/5 of the corresponding separations.
curves was nearly flat — i.e. increased very slowly — for small values of 95 per cent containment distance. However, when the 95 per cent containment distance reached values roughly between $S/6$ and $S/5$, each curve exhibited a sharp “knee” (i.e. change in gradient) at which the overlap probability began to rapidly increase. This suggested that the RGCSP base its choice of RNP on the rate at which the overlap probability increased with respect to 95 per cent containment distance. In particular, the RNP for a given route separation S should be the greatest integer number of nautical miles for which that rate remained less than some small percentage, such as 1 per cent or 10 per cent. A rough rule of thumb was that the greatest 95 per cent containment values producing increases of less than 1 per cent were approximately $S/6$, while those producing increases of less than 10 per cent were approximately $S/5$. Though the probabilities at which the curves were nearly flat varied almost linearly with α, the “knee” showed very little sensitivity to either α or λ_2.

6. In choosing an RNP value just below the “knee” of the curve corresponding to the chosen route separation, an airspace planner would ensure that nearly the lowest lateral overlap probability possible for that airspace had been achieved. On the other hand, operators complying with that RNP could have confidence that as long as the route structure did not change, they would not be asked to improve their normal navigational performance, as further reductions in 95 per cent containment distance would do little to reduce the probability of lateral overlap. The

Figure B-1. Lateral overlap probability for $\alpha = 0.0008$, $\lambda_2 = 45$
RGCSP accepted this application of the law of diminishing marginal returns in choosing RNP values for oceanic airspace.

7. While recognizing that the principle described above could be applied to yield several RNP values, and that additional values might eventually be needed in some regions, the RGCSP preferred, for the sake of simplicity, to follow the example of the FANS Committee and define only two oceanic RNP values. Since the existing NAT MNPS value of 23.3 km (12.6 NM) agreed fairly closely with the value that would result from applying the analysis described above to route systems utilizing 110 km (60 NM) lateral separation, and since the panel did not wish to impose re-certification costs on operators for the sake of a marginal reduction in lateral overlap probability, it adopted the existing value of 23.3 km (12.6 NM) as the RNP applicable to heavily used oceanic airspace. Furthermore, the analysis indicated that RNP values in the range 35-46 km (19-25 NM) were appropriate for route systems utilizing 222 km (120 NM) lateral separation, which was the largest separation applied to any route system. The RGCSP, acting conservatively, selected 37 km (20 NM) as the RNP value appropriate to oceanic areas with low traffic volume. In making this choice, the panel also noted the results of data collections on the navigational accuracy of inertial navigation systems, which showed that 95 per cent of the time, INS drift was slightly less than 3.7 km (2 NM) per hour. Recognizing that relatively few oceanic legs required more than ten hours of flying (and on some of

![Figure B-2. Lateral overlap probability for alpha = .0003, lambda2 = 45](image)

- 20 NM = 37 km
- 40 NM = 74 km
- 60 NM = 110 km
- 80 NM = 148 km
- 100 NM = 185 km
- 120 NM = 222 km
those that did, navigation systems more accurate than INS were typically used), the panel expected that RNP 20 would be achievable by most of the aircraft that, at that time, flew on oceanic routes.

8. Subsequent to the initial publication of Doc 9613, the Asia/Pacific Air Navigation Planning and Implementation Regional Group (APANPIRG) developed RNP 10 for application in oceanic and remote areas of the Pacific where the availability of navigation aids is limited. The rationale for the introduction of RNP 10 to support 50 NM longitudinal separation was developed by the Civil Aviation Authority of Australia. The rationale for the introduction of RNP 10 to support 50 NM lateral separation was developed by the Federal Aviation Administration of the U.S. Department of Transportation.
Appendix C

ESTIMATING NAVIGATION PERFORMANCE ACCURACY

1. INTRODUCTION

This appendix:

a) reviews the RNP error budget assumptions;

b) presents information on individual navigation systems;

c) presents an overview of navigation error characteristics; and

d) provides example error budgets for flight technical error (FTE).

2. RNP ERROR BUDGET ASSUMPTIONS

2.1 An error budget should:

a) allow for equipment manufacture and installation;

b) allow users to determine whether the expected aircraft tracking performance is consistent with their operational requirements; and

c) assist in the design of airspace procedures.

2.2 Error budgets must be simple because the available database usually does not substantiate more than elementary statistical procedures.

2.3 This same lack of a database is the reason that the root-sum-square (RSS) calculation procedure is almost universally accepted throughout the navaid industry to estimate system performance.

2.4 The RNAV errors are usually defined in terms of the lateral cross-track and along-track errors for two-dimensional (2-D) desired flight paths (see Figure C-1). The RNAV output position measurements, as well as the guidance inputs to the lateral and vertical channels of the aircraft flight control systems (AFCS), are specified as particular errors.

2.5 Navigation performance accuracy in the lateral dimension. The total system error (TSE) in the lateral dimension is a combination of:

a) navigation system error;

b) RNAV computation error;

c) display system error; and

d) flight technical error (FTE).

2.6 Navigation performance accuracy in the longitudinal dimension. The TSE in the longitudinal dimension is a combination of:

a) navigation system error;

b) RNAV computation error; and

c) display system error.

2.7 The combination of the navigation system errors and RNAV computation error is known as the system accuracy error, or position determination error.

3. NAVIGATION SYSTEM DESCRIPTIONS

3.1 The following paragraphs briefly describe currently available navigation systems that may be used to meet RNP requirements. The systems are described in more detail in the pertinent advisory material and manufacturer publications. All of the navigation systems presented are characterized in terms of equipment performance parameters, which determine the utilization and limitations of the individual navigation systems, and characterize the means by which a user derives navigation information. The equipment performance parameters are accuracy, availability, coverage, reliability, fix rate, fix dimension, capacity, ambiguity, time to recover navigation and integrity.
Navigation systems

3.2 Many public transport and business/executive jet aircraft have an FMS installation as an integral part of the avionics system. The core of the FMS is a computer that, as far as lateral navigation is concerned, operates with a large database which enables many routes to be pre-programmed and fed into the system by means of a data loader. In operation, the system is constantly updated with respect to positional accuracy by reference to conventional navigation aids, and the sophisticated database will ensure that the most appropriate aids are selected automatically.

3.3 RNAV equipment can accept a variety of navigation inputs; it is therefore convenient to consider the general characteristics of RNAV airborne equipment under the following headings:

a) VOR/DME;

b) LORAN-C;

c) INS;

d) DME/DME; and

e) GNSS.

3.4 In this manual, it is assumed that all of the above systems are either coupled, or capable of being coupled, directly to the autopilot. This facility may become a prerequisite of future RNAV equipment.

VOR/DME

3.5 Within the category of RNAV systems based on VOR/DME, there is a considerable variation in capability. Possibly the least complex of this type of equipment are systems using VOR/DME station moving. In effect, this type of RNAV electronically offsets a selected VOR/DME facility (by a range and bearing calculated and set by the operator) to the position of the next way-point and the aircraft is then provided with apparent VOR steering guidance to that way-point. The equipment is still subject to the designated operational coverage and reception limitations of the selected facility and any other errors inherent in the system. For such RNAV equipment to be approved, it must have the capability to accept a minimum of three present way-points, and its use would necessarily be limited to those routes within adequate VOR/DME coverage.

LORAN-C

3.6 LORAN-C is a radio navigation system that uses time-synchronized time signals from ground transmitting stations spaced several hundred miles apart. The stations are configured in chains of three to five stations which

Figure C-1. RNAV system error
transmit with the same group repetition interval. Within each chain, one station is designated as master and the remainder as secondaries; the master has unique pulse and phase transmission characteristics to distinguish it from the secondaries.

3.7 Aircraft position is derived by measuring the difference in arrival time of LORAN-C pulses from three or more ground stations. LORAN-C equipment may be a stand-alone system, but modern systems are more usually integrated with a navigation computer in order to provide positional and associated information.

3.8 The LORAN-C ground wave is used for navigation and adequate signal coverage is normally in the region of about 1,700 km (900 NM). The usable coverage area may, however, be affected by ground conductivity, atmospheric or other interference with the signal reception.

3.9 There are a number of disadvantages to the LORAN-C system:

a) the signals are subject to local interference from such sources as low frequency transmitters and power line emissions;

b) a failure of one transmitter can leave a major area without coverage; and

c) approval of LORAN-C for RNAV operations will be limited to the geographical area of good ground wave signal reception.

INS

3.10 The INS is totally self-contained equipment that operates by sensing aircraft accelerations with a gyro-stabilized platform. Output functions of the system include accurate present position information, navigation data, steering commands and angular pitch, roll and heading information. Most aircraft fitted with INS have a duplicated or triplicated system. The normal operating practice is to input the systems with the aircraft’s known position to a high degree of accuracy prior to departure from the aircraft stand. By pre-setting a series of way-points, the system will navigate the aircraft along a predetermined track. Way-points are usually fed into the system prior to departure, but new way-points can be inserted at any time.

3.11 The major disadvantage of INS is that its accuracy becomes degraded with elapsed time since the last update, for which a linear decay of 2.8 to 3.7 km (1.5 to 2 NM) per hour must be allowed, although significantly better accuracies are often achieved in practice. Whereas INS can be expected to guide an aircraft to within the normal tolerances of a VOR-defined route system for something in excess of 1,850 km (1,000 NM) following correct alignment before departure, it is apparent that a basic dual INS without automatic updating would not be sufficiently accurate for use in such airspace following several hours of flight, unless special measures were adopted which would enable the pilot to verify system accuracy by various updating or cross-checking methods.

3.12 A substantial number of aircraft have three INSs and it is usual for these to be operated in so-called triple-mix mode which provides an average of the positional data provided by the three independent systems. Normally this process provides a better position estimate, because if one of the three systems differs significantly from the other two, its data can be excluded from the averaging process.

3.13 Many INSs have sophisticated automatic updating facilities employing dual DME and/or VOR inputs. The most complex of these employ auto-tune devices which will check and provide constant updates from multiple DMEs within range of the aircraft (see also 3.14).

DME/DME

3.14 The most accurate means currently available for updating RNAV and flight management system equipment within continental airspace is by reference to multiple DMEs, with a minimum of two suitably positioned facilities being needed to provide a position fix. The quality of the positional information will be dependent on the relative geometry of the DMEs and their range from the aircraft, and therefore the system will have a fall-back routine whereby other combinations of aids may be utilized.

GNSS

3.15 GNSS are evolving. GNSS providing independent navigation, where the user performs on-board position determination from information received from broadcast transmissions by a number of satellites, will provide highly reliable, highly accurate and high integrity global coverage. Although the RNP concept allows for more than one satellite navigation system to be in use simultaneously, from an aircraft equipment point of view, maximum interoperability is essential as it would significantly simplify avionics and thereby reduce cost. It would also be beneficial if one system could serve as a complement to and/or in a backup role for the other.
3.16 Criteria to enable adequate integrity monitoring and health warning services for satellite navigation systems must be developed. Two distinct approaches to the problem of integrity, namely receiver autonomous integrity monitoring (RAIM) and the provision of a GNSS integrity channel (GIC) have been identified. Both are under investigation in several States and international organizations. Subject to the satisfactory development of integrity monitoring, it is confidently expected that GNSS will meet the civil aviation requirements for navigation.

4. NAVIGATION ERROR CHARACTERISTICS

Navigation system error

4.1 Navigation system error is defined at the output of the navigation receiver and therefore includes both the signal-in-space and airborne equipment error. The unique signal characteristics of a navigation system can have many error components, including propagation error, errors in the transmitted signal arising from geographical siting, magnetic alignment of the ground station and receiver errors such as receiver noise. The distribution and rate of change, as well as the magnitude of the errors, must be considered. Error distributions may contain both bias and random components. The bias component is generally easily compensated for when its characteristics are constant and known. For example, VOR radials can be flight-checked and the bias error reduced or eliminated through correction of the radial used on aeronautical charts. The LORAN-C seasonal and diurnal variations can also be compensated for by implementing correction algorithms in aircraft equipment logic and by publishing corrections periodically for use in air equipment. Ionospheric corrections may be incorporated into GNSS solutions.

4.2 The distribution of the random or unpredictable varying error component becomes the critical element to be considered in the design of navigation systems. The rate of change of the error within the distribution is also an important factor, especially when the system is used for approach and landing. Errors varying at a very high frequency can be readily integrated or filtered out in the aircraft equipment. Errors occurring at a slower rate can, however, be troublesome and result in disconcerting indications to the pilot. An example of one of these types of errors would be a "scalloped" VOR signal that causes the course display indicator (CDI) to vary. If the pilot attempts to follow the CDI closely, the aircraft will start to "S-turn" frequently. The manoeuvring will cause unnecessary pilot workload and degrade pilot confidence in the navigation system. This indication can be further aggravated if navigation systems exhibit different error characteristics during different phases of flight or when the aircraft is manoeuvring.

4.3 In summary, the magnitude, nature and distribution of errors as a function of time, terrain, avionics, aircraft type, aircraft manoeuvres and other factors must be considered. The evaluation of errors is a complex process, and the comparison of systems based on a single error number will be misleading.

RNAV computation error

4.4 Navigation system error/airborne equipment error components, in accordance with common practice, may include errors in the receiver outputs and errors contributed by the converter. In those cases in which an RNAV equipment accepts inputs directly from the navigation receiver, the error components normally included for the converter are not incurred; therefore, the appropriate value for airborne equipment error can be correspondingly reduced. The RNAV computation error can be estimated to be the output resolution of the RNAV equipment.

Display system error

4.5 Display system error may include error components contributed by any input, output or signal conversion equipment used by the display as it presents either aircraft position or guidance commands (e.g. course deviation or command heading) and by any course definition entry devices employed. For systems in which charts are incorporated as integral parts of the display, the display system error necessarily includes charting errors to the extent that they actually result in errors in controlling the position of the aircraft relative to a desired path over the ground. To be consistent, in the case of symbolic displays not employing integral charts, any errors in way-point definition directly attributable to errors in the reference chart used in determining way-point positions should be included as a component of this error. This type of error is virtually impossible to handle and, in general practice, highly accurate, published way-point locations are used to the greatest extent possible in setting up such systems to avoid such errors and to reduce workload.

Course selection error

4.6 Course selection error is the difference between the desired course setting and the course that is actually set.
5. ERROR BUDGETS FOR FTE

General

5.1 FTE refers to the accuracy with which the aircraft is controlled, as measured by the indicated aircraft position with respect to the indicated command or desired position. It does not include procedural blunders which are gross errors in human judgment, or inattentiveness that cause the pilot to stray significantly from the intended track.

5.2 It is difficult to completely characterize FTE. Equipment design and ambient environment variables affect FTE directly and measurably by affecting the processing of the basic display inputs. This includes determining the display scale factors and other display configuration variables which affect how guidance information is displayed. Compensating for aircraft control dynamics and air turbulence are examples of environmental variables which affect FTE. These factors must be taken into account in arriving at empirical values for FTE contribution to system use accuracy.

5.3 Guidance signals can be coupled to the aircraft in one of three modes: manual (raw CDI deviations), flight director or autopilot. Each of these modes has an error budget for FTE.

Manual FTE

5.4 The FTE, which is associated with manual modes, will vary widely depending on such factors as wind conditions and the experience, workload, fatigue and motivation of the pilot. The currently used 95 per cent probability for manual FTEs for the various phases of flight based on 1978 United States Federal Aviation Administration (FAA) tests of VOR/DME are as follows:

<table>
<thead>
<tr>
<th>Mode</th>
<th>FTE (km)</th>
<th>FTE (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanic</td>
<td>3.7</td>
<td>2.0</td>
</tr>
<tr>
<td>En-route</td>
<td>1.85</td>
<td>1.0</td>
</tr>
<tr>
<td>Terminal</td>
<td>1.85</td>
<td>1.0</td>
</tr>
<tr>
<td>Approach</td>
<td>0.93</td>
<td>0.5</td>
</tr>
</tbody>
</table>

5.5 Experience has shown, however, that FTE is related to navigation system and course sensitivity. Data collected to date from flight tests and flight simulations for microwave landing system (MLS) RNAV straight-line segments under varying wind conditions and aircraft types indicate a value of 0.216 NM (400 m) may be appropriate for the approach phase at a 95 per cent probability. Curved approach path data indicate larger FTEs. The difference between the VOR/DME values and MLS RNAV values indicates that the current manual 95 per cent probability values may be too conservative.

Coupled FTE

5.6 The RNAV system may be coupled to the AFCS or the flight director. When RNAV is coupled to the AFCS, the tracking accuracy (FTE) is a function of the autopilot gain and the AFCS guidance loop bandwidth. Autopilot gain and bandwidth are in turn dependent on the phase of flight. When RNAV is coupled to the flight director, the additional error source of flight director needle sensitivity must be considered.

5.7 There is very little published data on AFCS-coupled FTE. EUROCONTROL Experimental Centre Report No. 216, June 1988, entitled Navigational Accuracy of Aircraft Equipped with Advanced Navigation Systems determined that en-route AFCS-coupled system use accuracy is approximately 1 200 m (0.66 NM) (95 per cent probability). This would suggest that AFCS-coupled FTE could be as high as 400 m (0.22 NM) based on 1 000 m (0.5 NM) computation error for RNAV-DME-DME which includes inaccuracies due to the geometry of the DME station, and a 50:50 weighted mix of analog and digital DME sensor accuracy (685 m (0.37 NM)(2-sigma)).

5.8 A second value of AFCS-coupled FTE may be obtained from manufacturers’ specifications. A limited review of manufacturers’ specifications indicates track accuracy requirements of 463 m (0.25 NM) (95 per cent probability) for equipment.

5.9 A value of AFCS-coupled FTE for approaches may be obtained from MLS RNAV flight tests and simulations for straight-line segments. These indicate that AFCS-coupled FTE could be as low as 0.030 km (0.016 NM) for approaches.

5.10 Limited data exist on flight director autocoupled FTE from flight tests and flight simulations for MLS RNAV straight-line segments. These data indicate that an FTE value of 0.061 km (0.033 NM) may be appropriate for the approach phase at a 95 per cent probability. This value was determined under varying wind conditions and with different aircraft types.

RNAV FTE

5.11 RNAV FTE cannot be completely characterized at this time for all three aircraft modes, as extensive data must be obtained with a variety of sensors and conditions before a complete statistical representation of FTE can be defined.
The purpose here is to use preliminary findings to establish an assumed system error budget based on various data sources, fully recognizing that the database is incomplete. This assumed FTE should satisfy the requirements of system users and system planners.

5.12 Table C-1 presents assumed FTE values. Manual FTE figures in Table C-1 are those currently used in FAA, RTCA and ICAO documents.

5.13 AFCS-coupled FTE of 463 m (0.25 NM) for en route appears to be substantiated by the EUROCONTROL data and manufacturers’ specifications. Assuming that the approach FTE will be at least twice as accurate as en-route FTE, an approach FTE of 231 m (0.125 NM) is derived. This may be compared to the MLS RNAV value of 30 m (0.016 NM).

5.14 Flight director-coupled FTE is derived from the manual and AFCS-coupled FTE and MLS RNAV data. Based on the MLS RNAV tests, it is assumed that a flight director has at least a sixfold increase in FTE accuracy over manual flight, but has twice the error of an autopilot. Since the AFCS-coupled FTE values are reasonable with respect to available data, the assumption is made that flight director FTE will have at least twice the error of AFCS-coupled flight. This resultant flight director FTE of 463 m (0.25 NM) for the approach phase may be directly compared to the MLS RNAV value of 61 m (0.033 NM). The factor of 7.5 difference is comparable to the factor 7.8 difference for assumed AFCS-coupled FTE and the MLS RNAV value of 30 m (0.016 NM). This approximate order of magnitude difference between assumed FTE values and measured FTE values indicates that the assumed values may be conservative.

Table C-1. Assumed FTE values (95 per cent probability)

<table>
<thead>
<tr>
<th>Flight phase</th>
<th>Manual</th>
<th>Coupled</th>
<th>Flight director</th>
<th>Autopilot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km</td>
<td>NM</td>
<td>km</td>
<td>NM</td>
</tr>
<tr>
<td>Oceanic</td>
<td>3.7</td>
<td>2.0</td>
<td>0.93</td>
<td>0.50</td>
</tr>
<tr>
<td>En-route</td>
<td>1.85</td>
<td>1.0</td>
<td>0.93</td>
<td>0.50</td>
</tr>
<tr>
<td>Terminal</td>
<td>1.85</td>
<td>1.0</td>
<td>0.93</td>
<td>0.50</td>
</tr>
<tr>
<td>Approach</td>
<td>0.93</td>
<td>0.5</td>
<td>0.463</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The factor of 7.5 difference is comparable to the factor 7.8 difference for assumed AFCS-coupled FTE and the MLS RNAV value of 30 m (0.016 NM). This approximate order of magnitude difference between assumed FTE values and measured FTE values indicates that the assumed values may be conservative.
Appendix D

REFERENCE DOCUMENTATION RELATED TO AREA NAVIGATION

Australia

1. CAA Doc. ON 10, Operational Notes on Area Navigation Systems
2. CAA Publication Number 50, Airborne Radio Equipment Classification
3. CAA Publication, Flying Operational Standards and Instructions
4. CAA Publication, CAAP B-RNAV-1, Approval of Australian Operators and Aircraft to Operate under Instrument Flight Rules in European Airspace Designated for Basic Area Navigation (RNP 5)
5. CAA Publication, CAAP RNP 10-1, Required Navigation Performance 10 Operational Approval
6. EUROCAE ED-40, Minimum Performance Specification (MPS) for Airborne RNAV Computing Equipment based on two DME as sensors
7. EUROCAE ED-28, MPS for Airborne RNAV Computing Equipment based on VOR and DME as sensors
8. EUROCAE ED-12A/RTCA DO-178A, Software Consideration in Airborne Systems and Equipment Certification
9. EUROCAE ED-14B/RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment
10. EUROCAE ED-58 (Draft), MOPR for Airborne RNAV Equipment using Multi-sensor Inputs
11. EUROCAE ED-75, Minimum Aviation System Performance Standards (MASPS) for RNP Area Navigation
12. CAP360, Guidance to UK AOC Holders
13. NAT Doc. 001, T13.5N/5, Guidance and Information Material concerning Air Navigation in the NAT Region
15. SAE ARP 1570 (Proposed), Flight Management Computer System
16. EUROCONTROL Standard on Area Navigation, Operational and Functional Requirements

Canada

1. Guidance material on the application of Area Navigation (RNAV) in Canadian domestic airspace — TP 9064E.
2. ATC RNAV Control Procedures — Manual of Operations — TP-703

Europe

1. National Civil Aviation Legislation
2. Aeronautical Information Circulars
3. Airworthiness Notices
4. EUROCAE ED-39, Minimum Operational Performance Requirements (MOPR) for Airborne RNAV Systems based on two DME as sensors
Appendix D. Reference Documentation Related to Area Navigation

United States

1. AC 20-115A, Radio Technical Commission for Aeronautics (RTCA) DO-178A (8/12/86)
5. AC 90-45A, Approval of Area Navigation Systems for use in the U.S. National Airspace System (2/21/75)
6. AC 90-76B, Flight Operations in Oceanic Airspace (1/29/90)
8. AC 90-82B, Direct Routes in the Conterminous U.S. (7/15/90)
11. AC 121-13, Self-contained Navigation Systems (Long Range) (10/14/69)
14. AC 20-130, Airworthiness Approval of Multi-sensor Navigation Systems for use within the U.S. NAS and Alaska (9/12/88)
18. RTCA/DO-236, Minimum Aviation System Performance Standards (MASPS) for RNP Area Navigation
19. ARINC Characteristics 702-1, Flight Management Computer System
20. TSO C115, Airborne Navigation Equipment using Multi-sensor Inputs
22. AC 90-96, Approval of U.S. Operators and Aircraft to Operate under Instrument Flight Rules (IFR) in European Airspace Designated for Basic Area Navigation (BRNAV/RNP 5)
Appendix E

ICAO GUIDANCE MATERIAL FOR THE DEVELOPMENT OF A REQUIRED NAVIGATION PERFORMANCE 10 (RNP 10) OPERATIONAL APPROVAL PROCESS

1. INTRODUCTION

Purpose

1.1 This guidance material was developed by the Review of the General Concept of Separation Panel of the International Civil Aviation Organization (ICAO) in accordance with the requirements in Annex 11 — Air Traffic Services and the associated procedures published in the Manual on Required Navigation Performance (RNP) (Doc 9613) for the implementation of 93 km (50 NM) lateral route spacing based on required navigation performance type 10 (RNP 10) for en-route operations. RNP type 10 was the first RNP type to be implemented by States, and the approval process described in this document is based on the operational approval procedures developed by the United States in Federal Aviation Administration (FAA) Order 8400.12 (as amended) and by Australia in the Civil Aviation Advisory Publication (CAAP) RNP 10-1 for the granting of RNP 10 operational approval for flight operations on air traffic service (ATS) routes designated as RNP 10 in the North Pacific (NOPAC) and Tasman Sea areas.

1.2 This guidance material provides guidance to States for developing an RNP 10 operational approval process that meets the requirements in Doc 9613. It is desirable to standardize the operational approval process among States in order to facilitate an efficient and expeditious implementation of RNP and to assist those States which have had little or no experience with the RNP 10 approval process in developing the necessary documentation to grant an RNP 10 operational approval. Further, this material includes guidance on airworthiness, continuing airworthiness, operational and flight crew training issues. The information will enable an operator to be approved as capable of meeting the navigation element requirements for RNP 10 operations. It also provides a means by which an operator can lengthen any navigation time limit associated with the RNP 10 approval.

1.3 This guidance material does not address communications or surveillance requirements that may be specified for operation on a particular route or in a particular area. These requirements are specified in other documents such as aeronautical information publications (AIPs) and the ICAO Regional Supplementary Procedures (Doc 7030). Whilst an RNP 10 operational approval primarily relates to the navigation requirements of the airspace, operators and flight crew are still required to take account of all operational documents relating to the airspace that are required by the appropriate State authority before conducting flights into that airspace.

RNP 10 requirements

1.4 In accordance with Doc 9613, an operator is required to obtain RNP operational approval from the State of Registry or State of the Operator before conducting RNP 10 operations. RNP 10 operations can be conducted on specific ATS routes or in designated airspace, e.g. the NOPAC and the Tasman Sea areas, in accordance with specific ATS procedures.

1.5 The rationale for having chosen the RNP 10 value was to support reduced lateral and longitudinal separation minima for application in oceanic and remote areas where the availability of navigation aids is limited. However, if States plan to implement RNP 10 in continental airspace, careful consideration should be given to whether all of the requirements for RNP 10 operations contained in this document apply to operations conducted in continental/domestic airspace.

1.6 In accordance with RNP criteria, all aircraft operating in RNP 10 airspace must have a cross-track navigation error no greater than ±18.5 km (±10 NM) for 95 per cent of the flight time. This includes positioning error, flight technical error (FTE), path definition error and display error. Also, the aircraft along-track positioning error must be no greater than ±18.5 km (±10 NM) for 95 per cent of the flight time (see Appendix A).
Appendix E. ICAO Guidance Material for the Development of a Required Navigation Performance 10 (RNP 10) Operational Approval Process

Note.— For RNP 10 operational approval of aircraft capable of coupling the area navigation (RNAV) system to the flight director or autopilot, navigational positioning error is considered to be the dominant contributor to cross-track and along-track error. Flight technical error, path definition error and display errors are considered to be insignificant for the purposes of RNP 10 approval.

1.7 It should be noted that when the data collection method described in Appendix 1 of FAA Order 8400.12 (as amended) is used as the basis for an RNP 10 operational approval, these error types are included in the analysis. However, when the data collection method described in Appendix 6 of that document is used, these errors are not included since that method is more conservative. The Appendix 6 method uses radial error instead of cross-track and along-track error.

1.8 To satisfy the requirements for RNP 10 operations in oceanic and remote areas, an operator must also comply with the relevant requirements of ICAO Annex 2 — Rules of the Air.

1.9 RNP 10 requires that aircraft operating in oceanic and remote areas be equipped with at least two independent and serviceable long-range navigation systems (LRNSs) comprising an inertial navigation system (INS), an inertial referencing system (IRS)/flight management system (FMS) or a global positioning system (GPS), with an integrity such that the navigation system does not provide an unacceptable probability of misleading information.

2. GENERAL INFORMATION ON DEVELOPING AN RNP 10 OPERATIONAL APPROVAL DOCUMENT

Background

2.1 The United States Department of Transport published FAA Order 8400.12 — Required Navigation Performance 10 (RNP-10) Operational Approval on 24 January 1997, detailing the RNP 10 approval process for United States operators. Based on the comments received from operators, States, and aviation regulatory authorities, the Order was amended and a new version, 8400.12A, was published on 9 February 1998. The Civil Aviation Safety Authority (CASA) of Australia, in coordination with the United States, used FAA Order 8400.12 (as amended) to develop Civil Aviation Advisory Publication (CAAP) RNP 10-1, which details the approval process for Australian operators.
3. APPLYING FOR AN RNP 10 OPERATIONAL APPROVAL

General

3.1 The steps that must be completed before an RNP 10 operational approval is issued to an operator are as follows:

a) aircraft equipment eligibility for RNP 10 must be determined by the State’s aviation authority;

b) flight crew training and operating procedures for the navigation systems to be used must be identified by the operator; and

c) the operator database used, flight crew training, and operating procedures must be evaluated by the State’s aviation authority.

3.2 Following the successful completion of the above steps, an RNP 10 operational approval, letter of authorization or appropriate operations specifications (Ops Specs) will then be issued by the State.

Starting the approval process

Pre-application meeting

3.3 Individual operators should schedule a pre-application meeting with their aviation/regulatory authority to discuss the aviation authority’s airworthiness and operational requirements for approval to operate in RNP 10 airspace, including:

a) the contents of the operator’s application;

b) the aviation authority’s review and evaluation of the application;

c) limitations (if any) on the approval; and

d) the conditions under which the operational approval may be cancelled.

Contents of an application for an RNP 10 approval

Airworthiness documentation

3.5 Eligibility airworthiness documents. Relevant documentation (e.g. the AFM) must be available to establish that the aircraft is equipped with LRNSs which meet the requirements of RNP 10.

3.6 Description of aircraft equipment. The applicant must provide a configuration list that details pertinent components and equipment to be used for long-range navigation and RNP 10 operations.

3.7 RNP 10 time limit for inertial navigation systems (INSs) or inertial reference units (IRUs) (if applicable). The applicant’s proposed RNP 10 time limit for the specified INS or IRU must be provided. The applicant must consider the effect of headwinds in the area in which RNP 10 operations are intended to be carried out (see Section 7) to determine the feasibility of the proposed operation.

Training documentation

3.8 Commercial operators should submit training syllabi and other appropriate material to the aviation authority to show that the operational practices and procedures and training items related to RNP 10 operations have been incorporated in training programmes where applicable (e.g. initial, upgrade or recurrent training for flight crew, dispatchers or maintenance personnel). Practices and procedures in the following areas must be standardized using the guidelines contained in Attachment 2: flight planning; pre-flight procedures at the aircraft for each flight; procedures before entry into an RNP 10 route or airspace; and in-flight, contingency and flight crew qualification procedures.

3.9 Private operators should demonstrate that they will operate using the practices and procedures identified in Attachment 2.
Operations manuals and checklists

3.10 Commercial operators must revise their operations manuals and checklists to include information/guidance on the standard operating procedures detailed in Attachment 2. The appropriate manuals should contain navigation operating instructions and contingency procedures where specified, e.g. weather deviation procedures. Manuals and checklists must be submitted for review as part of the application process.

3.11 For private operators, the appropriate manuals must contain navigation operating instructions and contingency procedures. These manuals and the aircraft navigation equipment manufacturer’s checklist, as appropriate, must be submitted for review as part of the application process.

Past performance

3.12 An operating history of the operator must be included in the application. The applicant must address any events or incidents related to navigation errors for that operator (e.g. as reported on a State’s navigation error investigation form) that have been covered by training, procedures, maintenance, or the aircraft/navigation system modifications which are to be used.

Minimum equipment list (MEL)

3.13 Any MEL revisions necessary to address the RNP 10 provisions of the guidance material in this manual must be approved (e.g. if approval is based on “triple-mix”, the MEL must reflect that three navigation units must be operating).

Maintenance

3.14 The operator should submit a maintenance programme for approval at the time of application.

Evaluation, investigation and cancellation

Review and evaluation of applications

3.15 Once the application has been submitted, the aviation authority will begin the process of review and evaluation. If the contents of the application are deficient, additional information will be requested from the operator. When all the airworthiness and operational requirements of the application are met, the approval to operate in RNP 10 airspace or on RNP 10 routes will be issued by the aviation authority.

3.16 An RNP 10 operational approval should be issued in an appropriate form, e.g. a certificate indicating an RNP 10 operational approval, Ops Specs or letter of authorization. It should identify any conditions or limitations on operations in RNP 10 airspace, e.g. required navigation systems or procedures, limits on time, routes or areas of operation.

Monitoring and investigation of navigation and system errors

3.17 Demonstrated navigation accuracy provides the basis for determining the lateral route spacing and separation minima necessary for traffic operating on a given route. Accordingly, lateral and longitudinal navigation errors are monitored (i.e. through monitoring programmes which use Oceanic Navigation Error Reports, Oceanic Altitude Deviation Reports and Navigation Error Reports (Tasman Sea)) and then investigated to prevent their reoccurrence. Radar observations of each aircraft’s proximity to track and altitude, before coming into coverage of short-range nav aids at the end of the oceanic route segment, are typically noted by ATS facilities.

3.18 If an observation indicates that an aircraft is not within the established limit, the reason for the apparent deviation from track or altitude may need to be determined and steps taken to prevent a recurrence. Additionally, it is a condition of the approval that pilots/operators notify the relevant regulatory authority of any lateral navigational errors of 27.8 km (15 NM) or more, longitudinal navigational errors of 18.5 km (10 NM) or more, longitudinal navigational errors or three minutes or more variation between the aircraft’s estimated time of arrival at a reporting point and its actual time of arrival, or navigation system failures.

Cancellation of RNP 10 approval

3.19 An aviation authority may consider any navigation error reports in determining remedial action. Repeated navigation error occurrences attributed to a specific piece of navigation equipment may result in cancellation of the approval for use of that equipment.

3.20 Information that indicates the potential for repeated errors may require modification of an operator’s training programme. Information that attributes multiple errors to a particular pilot crew may necessitate remedial training or licence review.
4. THREE METHODS OF DETERMINING AIRCRAFT ELIGIBILITY

Method 1 — Aircraft eligibility through RNP certification

4.1 Method 1 can be used to approve aircraft that already have been formally certificated and approved for RNP operations.

RNP compliance

4.2 RNP compliance is documented in the AFM and is typically not limited to RNP 10. The AFM will address RNP levels that have been demonstrated and any related provisions applicable to their use (e.g. navaid sensor requirements). Operational approval will be based upon the performance stated in the AFM.

Airworthiness approval

4.3 An airworthiness approval specifically addressing RNP 10 performance may be obtained. Sample wording that could be used in the AFM when an RNP 10 approval is granted by aircraft certification offices for a change in the INS/IRU certified performance is as follows:

“The XXX navigation system has been demonstrated to meet the criteria of [State’s guidance material document] as a primary means of navigation for flights up to YYY hours’ duration without updating. The determination of flight duration starts when the system is placed in navigation mode. For flights which include airborne updating of navigation position, the operator must address the effect that updating has on position accuracy and any associated time limits for RNP operations pertinent to the updating navaid facilities used and the area, routes or procedures to be flown. Demonstration of performance in accordance with the provisions of [State’s guidance material document] does not constitute approval to conduct RNP operations.”

Note.— The above wording in an AFM is based upon performance approval by the aviation authority and is only one element of the approval process. Aircraft that have had this wording entered into their flight manual will be eligible for approval through issuance of operations specifications or a letter of approval if all other criteria are met. The YYY hours specified in the AFM do not include updating. When the operator proposes a credit for updating, the proposal must address the effect the updating has on position accuracy and any associated time limits for RNP operations pertinent to the updating navaid facilities used and the area, routes or procedures to be flown.

Method 2 — Aircraft eligibility through prior navigation system certification

4.4 Method 2 can be used to approve aircraft whose level of performance, under other/previous standards, can be equated to the RNP 10 criteria. The standards listed in 4.5 to 4.12 can be used to qualify an aircraft. Other standards may also be used if they are sufficient to ensure that the RNP 10 requirements are met. If other standards are to be used, the applicant must propose an acceptable means of compliance.

Transport category aircraft equipped with dual FMSs and other equipment in accordance with Attachment 3 (the United States domestic flight plan/E suffix group)

4.5 Aircraft equipped with INSs or IRUs, radio navigation positioning updating and electronic map displays, in accordance with Attachment 3, meet all of the RNP 10 requirements for up to 6.2 hours of flight time. This time starts when the systems are placed in the navigation mode or at the last point at which the systems are updated. If the systems are updated en route, the operator must show the effect that the accuracy of the update has on the time limit (see 5.2 for information on the adjustment factors for systems that are updated en route).

Note.— The 6.2 hours of flight time are based on an inertial system with a 95 per cent radial position error rate (circular error rate) of 3.7 km/h (2.0 NM/h), which is statistically equivalent to individual 95 per cent cross-track and 95 per cent along-track position error rates (orthogonal error rates) of 2.9678 km/h (1.6015 NM/h) each, and 95 per cent cross-track and 95 per cent along-track position error limits of 18.5 km (10 NM) each (e.g. 18.5 km (10 NM)/2.9678 km/h (1.6015 NM/h) = 6.2 hours)).

Aircraft equipped with INSs or IRUs that have been approved in accordance with 14 CFR, Part 121, Appendix G

4.6 Inertial systems approved in accordance with 14 CFR, Part 121, Appendix G (or a State’s equivalent) meet RNP 10 requirements for up to 6.2 hours of flight time. The timing starts from when the systems are placed in the navigation mode or at the last point at which the systems
are updated. If the systems are updated en route, the operator must show the effect that the accuracy of the update has on the time limit. INS accuracy, reliability and maintenance, as well as flight crew training, required by 14 CFR 121.355 and Part 121, Appendix G, are applicable to an RNP 10 authorization.

Aircraft equipped with dual INSs or IRUs

4.7 Where dual INSs or IRUs provide the only means of long-range navigation, the systems must be installed in accordance with the aviation authority’s standards. A baseline RNP 10 time limit of 6.2 hours after the systems are placed in navigation (NAV) mode is applicable. The baseline time limit of 6.2 hours may be extended on the basis of a method described in Section 5 or en-route system updating (see 5.2).

Aircraft equipped with dual INSs or IRUs approved to minimum navigation performance specifications (MNPS) or approved for RNAV operations in Australia

4.8 Aircraft equipped with dual INSs or IRUs approved for MNPS or RNAV operations in Australia meet RNP 10 requirements for up to 6.2 hours after the systems are placed in the NAV mode or following an en-route update. If the systems are updated en route, the operator must show the effect that the accuracy of the update has on the time limit.

Note.— Section 5 provides information on acceptable procedures for operators who wish to increase the 6.2 hour time limitation specified.

Aircraft equipped with a single INS/IRU and a single GPS approved for primary means of navigation in oceanic and remote areas

4.9 Aircraft equipped with a single INS or IRU and a single GPS are considered to meet the RNP 10 requirements without time limitations. The INS or IRU must be approved to 14 CFR, Part 121, Appendix G. The GPS must be TSO-C129-authorized and must have an approved fault detection and exclusion (FDE) availability prediction programme. The maximum allowable time for which the FDE capability is projected to be unavailable is 34 minutes. The maximum outage time must be included as a condition of the RNP 10 approval. The AFM must indicate that the particular INS/GPS installation meets the appropriate aviation authority’s requirements.

Aircraft equipped with dual GPSs approved for primary means of navigation in oceanic and remote areas

4.10 Aircraft approved to use GPS as a primary means of navigation for oceanic and remote operations, in accordance with the appropriate aviation authority’s requirements, meet the RNP 10 requirements without time limitations.

4.11 The AFM must indicate that a particular GPS installation meets the appropriate aviation authority’s requirements. Dual TSO-authorized GPS equipment must be fitted and an approved FDE availability prediction programme must be used. The maximum allowable time for which FDE capability is projected to be unavailable is 34 minutes. The maximum outage time must be included as a condition of the RNP 10 approval.

Note.— If predictions indicate that the maximum FDE outage time for the intended RNP 10 operation will be exceeded, then the operation must be rescheduled when FDE is available, or RNP 10 must be predicated on an alternate means of navigation.

Multi-sensor systems integrating GPS (with GPS integrity provided by receiver autonomous integrity monitoring (RAIM))

4.12 Multi-sensor systems integrating GPS with RAIM or FDE that are approved using the guidance contained in United States FAA Advisory Circular AC 20-130A (Airworthiness Approval of Navigation or Flight Management Systems Integrating Multiple Navigation Sensors), or its equivalent, meet RNP 10 requirements without time limitations. In this case, the INS or IRU must be approved in accordance with 14 CFR, Part 121, Appendix G.

Method 3 — Aircraft eligibility through data collection

4.13 Method 3 requires that operators collect data to gain an RNP 10 approval for a specified period of time. The data collection programme must address the appropriate navigational accuracy requirements for RNP 10. The data collection must ensure that the applicant demonstrate to the aviation authority that the aircraft and the navigation system provide the flight crew with navigation situational awareness relative to the intended RNP 10 route. The data collection must also ensure that a clear understanding of the status of the navigation system is provided and that failure indications and procedures are consistent with maintaining the required navigation performance.
4.14 There are two data collection methods:

a) the sequential method is a data collection programme meeting the provisions of FAA Order 8400.12 (as amended), Appendix 1. This method allows the operator to collect data and plot it against the “pass-fail” graphs to determine whether the operator’s aircraft system will meet the RNP 10 requirements for the length of time needed by the operator; and

b) the periodic method of data collection employs the use of a hand-held GPS receiver as a baseline for collected INS data, which is described in FAA Order 8400.12 (as amended), Appendix 6 (Periodic Method). The data collected is then analysed as described in Appendix 6 to determine whether the system is capable of maintaining RNP 10 for the length of time needed by the operator.

5. OBTAINING APPROVAL FOR AN EXTENDED TIME LIMIT FOR INSs OR IRUs

Data/certification methods

5.1 The baseline RNP 10 time limit for INSs and IRUs after the systems are placed in the navigation mode is 6.2 hours, as detailed in 4.5 to 4.8. This time limit may be extended by one of the following methods:

a) either an operator or a system manufacturer presenting data to the appropriate aircraft certification office to show that an RNP 10 time limit extension is warranted;

b) an operator conducting a data collection programme using either the sequential or periodic method described in 4.14; or

c) an operator establishing an extended time limit by showing that the carriage of multiple navigation sensors, which mix or average navigation position error, justifies such an extension (e.g. triple-mix INSs). If the operator uses a time limit based on mixing, then the availability of the mixing capability is required for a commercial operator at dispatch or for a private operator at departure for flights on RNP 10 routes or in RNP airspace. If the mixing or averaging function is not available at dispatch, then the applicant must use a time limit that does not depend on mixing. The extended time limit must be validated by a data collection programme and analysis as specified in the following paragraphs.

Effect of en-route updates

5.2 Operators may extend their RNP 10 navigation capability time by updating. Approvals for various updating procedures are based upon the baseline for which they have been approved minus the time factors shown below:

a) automatic updating using distance measuring equipment (DME)/DME = baseline minus 0.3 hours (e.g. an aircraft that has been approved for 6.2 hours can gain 5.9 hours following an automatic DME/DME update);

b) automatic updating using DME/DME/VHF omnidirectional radio range (VOR) = baseline minus 0.5 hours; and

c) manual updating using a method similar to that contained in FAA Order 8400 12A (as amended), Appendix 7 or approved by the aviation authority = baseline minus 1 hour.

Automatic radio position updating

5.3 Automatic updating is any updating procedure that does not require the flight crew to manually insert coordinates. Automatic updating is acceptable provided that:

a) procedures for automatic updating are included in an operator’s training programme; and

b) flight crews are knowledgeable of the updating procedures and of the effect of the update on the navigation solution.

An acceptable procedure for automatic updating may be used as the basis for an RNP 10 approval for an extended time as indicated by data presented to the aviation authority. This data must present a clear indication of the accuracy of the update and the effect of the update on the navigation capabilities for the remainder of the flight.

Manual radio position updating

5.4 If manual updating is not specifically approved, manual position updates are not permitted in RNP 10
operations. Manual radio updating may be considered acceptable for operations in airspace where RNP 10 is applied provided that:

a) the procedures for manual updating are reviewed by the aviation authority on a case-by-case basis. An acceptable procedure for manual updating is described in FAA Order 8400.12A (as amended), Appendix 7 and may be used as the basis for an RNP 10 approval for an extended time when supported by acceptable data;

b) operators show that their updating and training procedures include measures/cross-checking to prevent Human Factors errors and the flight crew qualification syllabus is found to provide effective pilot training; and

c) the operator provides data that establish the accuracy with which the aircraft navigation system can be updated using manual procedures and representative navigation aids. Data should be provided that show the update accuracy achieved in in-service operations. This factor must be considered when establishing the RNP 10 time limit for INSs or IRUs.

6. MAINTENANCE CONSIDERATIONS

Minimum equipment list (MEL) or equivalent

6.1 If an RNP 10 operational approval is granted on the basis of a specific operational procedure (such as credit for triple-mix), operators must adjust the MEL, or equivalent, and specify the required dispatch conditions through the civil aviation authority.

Continuing airworthiness (maintenance requirements)

6.2 The holder of the design approval, including either the type certificate (TC) or supplemental type certificate (STC) for each individual navigation system installation, must furnish at least one set of complete instructions for continued airworthiness, in accordance with Section 1529 of 14 CFR Parts 23, 25, 27 and 29, for the maintenance requirements for operations conducted in accordance with CAAP RNP 10-1.

7. OPERATIONAL REQUIREMENTS

Navigational performance

7.1 All aircraft must meet a cross-track keeping accuracy and along-track positioning accuracy of no greater than ±18.5 km (10 NM) for 95 per cent of the flight time in RNP 10 airspace.

Navigation equipage

7.2 All aircraft operating in RNP 10 oceanic and remote airspace must be fitted with two fully serviceable independent long-range navigation systems with integrity such that the navigation system does not provide misleading information.

7.3 An aviation authority may approve the use of a single long-range system in specific circumstances (e.g. North Atlantic MNPS and 14 CFR 121.351(c) refer). An RNP 10 approval is still required.

Flight plan designation

7.4 Operators must indicate the ability to meet RNP 10 for the route or airspace in accordance with the Procedures for Air Navigation Services — Rules of the Air and Air Traffic Services (PANS-RAC, Doc 4444), Appendix 2, Item 10: Equipment. The letter “R” must be placed in Field 10 of the ICAO flight plan to indicate that the pilot has:

a) reviewed the planned route of flight, including the routes to any alternate aerodromes, to identify the types of RNP involved;

b) confirmed that the operator and aircraft have been approved by the aviation authority for RNP operations; and

c) confirmed that the aircraft can be operated in accordance with the RNP requirements for the planned route of flight, including the routes to any alternate aerodromes.

Availability of nav aids

7.5 At dispatch or during flight planning, the operator must ensure that adequate navigation aids are available en route to enable the aircraft to navigate to RNP 10.
Route evaluation for RNP 10 time limits for aircraft equipped only with INSs or IRUs

7.6 As detailed in 5.2 to 5.4, an RNP 10 time limit must be established for aircraft equipped only with INSs or IRUs. When planning operations in areas where RNP 10 is applied, the operator must establish that the aircraft will comply with the time limitation on the routes that it intends to fly.

7.7 In making this evaluation, the operator must consider the effect of headwinds and, for aircraft not capable of coupling the navigation system or flight director to the autopilot, the operator may choose to make this evaluation on a one-time basis or on a per-flight basis. The operator should consider the points listed in the following subsections in making the evaluation.

Route evaluation

7.8 The operator must establish the capability of the aircraft to satisfy the RNP 10 time limit established for dispatch or departure into RNP 10 airspace.

Start point for calculation

7.9 The calculation must start at the point where the system is placed in the navigation mode or the last point at which the system is expected to be updated.

Stop point for calculation

7.10 The stop point may be one of the following:

a) the point at which the aircraft will begin to navigate by reference to ICAO standard nav aids (VOR, DME, non-directional radio beacon (NDB)) and/or comes under radar surveillance from ATC; or

b) the first point at which the navigation system is expected to be updated.

Sources of wind component data

7.11 The headwind component to be considered for the route may be obtained from any source found acceptable to the aviation authority. Acceptable sources for wind data include: the State’s Bureau of Meteorology, National Weather Service, Bracknell, industry sources such as Boeing Winds on World Air Routes, and historical data supplied by the operator.

One-time calculation based on 75 per cent probability wind components

7.12 Certain sources of wind data establish the probability of experiencing a given wind component on routes between city pairs on an annual basis. If an operator chooses to make a one-time calculation of RNP 10 time limit compliance, the operator may use the annual 75 per cent probability level to calculate the effect of headwinds (this level has been found to be a reasonable estimation of wind components).

Calculation of time limit for each specific flight

7.13 The operator may choose to evaluate each individual flight using flight plan winds to determine if the aircraft will comply with the specified time limit. If it is determined that the time limit will be exceeded, then the aircraft must fly an alternate route or delay the flight until the time limit can be met. This evaluation is a flight planning or dispatch task.

8. CERTIFICATION ACTIONS RELATED TO RNP 10

Improved performance

8.1 An operator may elect to certify the aircraft navigation performance to a new standard to take advantage of the capability of the aircraft. The aircraft may obtain credit for improved performance through operational data collection, in which case certification is not necessary.

8.2 The following paragraphs provide guidelines for different types of navigation systems. The operator must propose an acceptable means of compliance for any systems not identified below.

Aircraft incorporating INS

8.3 For aircraft with INS certified under United States 14 CFR, Part 121, Appendix G, additional certification is only necessary for operators who choose to certify INS accuracy to better than 3.7 km (2 NM) per hour radial error (2.9678 km (1.6015 NM) per hour cross-track error). However, the following conditions apply:

a) the certification of INS performance must address all issues associated with maintaining the required
accuracy, including accuracy and reliability, acceptance test procedures, maintenance procedures and training programmes; and

b) the operator must identify the standard against which INS performance is to be demonstrated. This standard may be a regulatory (i.e. Appendix G), an industry or an operator-unique specification. A statement must be added to the AFM identifying the accuracy standard used for certification (see 4.3).

Aircraft incorporating GPS

8.4 United States FAA Advisory Circular AC 20-138 and Australian CAAP 35-1 provide an acceptable means of complying with installation requirements for aircraft that use GPS but do not integrate it with other sensors. FAA AC 20-130A describes an acceptable means of compliance for multi-sensor navigation systems that incorporate GPS. Aircraft that intend to use GPS as the only navigation system (e.g. no INS or IRS) on RNP 10 routes or in RNP 10 airspace must also comply with the regulations and related advisory documentation of the relevant aviation authority, except for specific GPS requirements described in this guidance material.

Equipment configuration

8.5 The equipment configuration used to demonstrate the required accuracy must be identical to the configuration that is specified in the MEL.

8.6 The equipment configuration used to demonstrate the required accuracy must be supportable in RNP 10 oceanic and remote airspace. For example, the statistical benefit of estimating position using INS position data filtered with DME data will not be considered.

8.7 The design of the installation must comply with the design standards that are applicable to the aircraft being modified.
Attachment 1 to Appendix E

SOURCES OF ADDITIONAL INFORMATION

1. WEB SITES

• Federal Aviation Administration (FAA), United States: http://www.faa.gov/ats/ato/rnp.htm

• Civil Aviation Safety Authority (CASA), Australia: http://www.casa.gov.au

2. RELATED PUBLICATIONS

• Federal Aviation Administration (FAA), United States
 — FAA Order 8400.12A (as amended)
 — Code of Federal Regulations (CFR), Part 121, Appendix G

• Civil Aviation Safety Authority (CASA), Australia
 — Civil Aviation Advisory Publications (CAAPs) 35-1

(Copies may be obtained from Airservices Australia Publications Centre, PO Box 1986, Carlton South 3053, Victoria, Australia.)

• International Civil Aviation Organization (ICAO)
 — Manual on Required Navigation Performance (RNP) (Doc 9613-AN/937)
 — Asia/Pacific Guidance Material for RNAV Operations

(Copies may be obtained from the ICAO Asia and Pacific Office, 252/1 Vipavadee Rangsit Road, Ladyao, Chatuchak, Bangkok 10900, Thailand.)

• Radio Technical Commission for Aeronautics (RTCA)

(Copies may be obtained from RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite 1020, Washington, DC 20036.)
Attachment 2 to Appendix E

TRAINING PROGRAMMES AND OPERATING PRACTICES AND PROCEDURES

1. INTRODUCTION

The following items (2 through 5) should be standardized and incorporated into training programmes and operating practices and procedures. Certain items may already be adequately standardized in existing operator programmes and procedures. New technologies may also eliminate the need for certain crew actions. If this is found to be the case, then the intent of this attachment can be considered to have been met.

Note.—This guidance material has been written for a wide variety of operator types and therefore certain items that have been included may not apply to all operators.

2. FLIGHT PLANNING

During flight planning, the flight crew should pay particular attention to conditions that may affect operations in RNP 10 airspace (or on RNP 10 routes). These include but may not be limited to:

a) verifying that the aircraft has been approved for RNP 10 operations;

b) verifying that the RNP 10 time limit has been accounted for;

c) verifying that the letter “R” has been annotated in “Item 10: Equipment” of the ICAO model flight plan form;

d) verifying the requirements for GPS, such as FDE, if appropriate for the operation; and

e) if required for a specific navigation system, accounting for any operating restriction related to RNP 10 approval.

3. PRE-FLIGHT PROCEDURES

The following actions should be completed during pre-flight:

a) review maintenance logs and forms to ascertain the condition of the equipment required for flight in RNP 10 airspace or on an RNP 10 route. Ensure that maintenance action has been taken to correct defects in the required equipment;

b) during the external inspection of an aircraft, check the condition of the navigation antennas and the condition of the fuselage skin in the vicinity of each of these antennas (this check may be accomplished by a qualified and authorized person other than the pilot, e.g. a flight engineer or maintenance person); and

c) review the emergency procedures for operations in RNP 10 airspace or on RNP 10 routes. These are no different than normal oceanic emergency procedures with one exception — crews must be able to recognize and ATC must be advised when the aircraft is no longer able to navigate to its RNP 10 approval capability.

4. EN ROUTE

4.1 At least two long-range navigation systems capable of navigating to the RNP should be operational at the oceanic entry point. If this is not the case, then the pilot should consider an alternate routing which does not require that equipment or diverting for repairs.

4.2 Before entering oceanic airspace, the position of the aircraft should be checked as accurately as possible by using external navigation aids. This may require DME/DME and/or VOR checks to determine navigation system errors through displayed and actual positions. If the system must be updated, the proper procedures should be followed with the aid of a prepared checklist.

4.3 Operator in-flight operating drills must include mandatory cross-checking procedures to identify navigation errors in sufficient time to prevent aircraft from inadvertent deviation from ATC-cleared routes.
4.4 Crews must advise ATC of any deterioration or failure of the navigation equipment below the navigation performance requirements or of any deviations required for a contingency procedure.

5. **FLIGHT CREW KNOWLEDGE**

5.1 Commercial operators should ensure that flight crews have been trained so that they are knowledgeable of the topics contained in this guidance material, the limits of their RNP 10 navigation capabilities, the effects of updating, and RNP 10 contingency procedures.

5.2 Private operators should show the aviation authority that pilots are knowledgeable of RNP 10 operations. However, some States might not require private operators to have formal training programmes for some types of operations (e.g. FAA Order 8700.1, *General Aviation Operations Inspector’s Handbook*, Chapter 222, addresses training for Part 91, Operators). The aviation authority in determining whether a private operator’s training is adequate might:

 a) accept a training centre certificate without further evaluation;

 b) evaluate a training course before accepting a training centre certificate from a specific centre;

 c) accept a statement in the operator’s application for an RNP 10 approval that the operator has ensured and will continue to ensure that flight crews are knowledgeable of the RNP 10 operating practices and procedures contained in FAA Order 8700.1; and

 d) accept a statement by the operator that it has conducted or will conduct an in-house RNP 10 training programme.

— — — — — — — — — —
1. Aircraft equipment suffix "/E" is a designation used by the United States; it is not an ICAO designation and should only be used for flights within the continental United States. The suffix is defined herein only to identify the requirements needed to satisfy 4.5 of this guidance material.

2. FMS with barometric vertical navigation, oceanic, en-route, terminal and approach capability. Equipment requirements are:
 a) dual FMSs which meet the specifications of United States Advisory Circular (AC) 25-15 (or a State’s equivalent), Approval of Flight Management Systems in Transport Category Airplanes; AC 20-129 (or a State’s equivalent), Airworthiness Approval of Vertical Navigation (VNAV) Systems for use in the U.S. National Airspace System (NAS) and Alaska; or AC 20-130 (or a State’s equivalent), Airworthiness Approval of Multi-Sensor Navigation Systems for use in the U.S. National Airspace System (NAS) and Alaska;
 b) a flight director and autopilot control system capable of following the lateral and vertical FMS flight path;
 c) at least dual IRUs;
 d) a database containing the way-points and speed/altitude constraints for the route and/or procedure to be flown that is automatically loaded into the FMS flight plan; and
 e) an electronic map.

Note.— The above has been taken from the United States Aeronautical Information Manual (AIM), Table 5-1-2, Aircraft Equipment Suffixes — Area Navigation Systems.

— — — — — — — — — —

1/3/01
No. 1
Attachment 4 to Appendix E

CHECKLIST FOR THE RNP 10 APPROVAL APPLICATION PROCESS

1. OPERATOR FUNCTIONS

1.1 The operator prepares an application package as described in Section 3 of this document.

1.2 Operators should become familiar with Section 4 of this document before contacting the appropriate aviation authority. A knowledge of this section gives an operator an indication of how much time might be required to obtain an approval. Method 1 approvals are administrative and can be granted as quickly as the aviation authority’s workload will permit. Method 2 approvals may be made quite rapidly or may take longer depending upon the aircraft/navigation system configurations. Method 3 approvals will usually involve an extended time for evaluation and an approval may or may not be granted.

1.3 The operator schedules a pre-application meeting with its aviation authority.

1.4 The operator submits a formal application for approval in accordance with the aviation authority’s expectations discussed in the pre-application meeting.

1.5 RNP 10 airspace is an airspace where special requirements are specified for aircraft navigation. ICAO provisions require States to ensure that flight crew members are qualified to operate in this airspace. Thus general aviation operators, as well as commercial operators, will be required to satisfy their aviation authority that they are qualified.

1.6 The operators receive operational approval to operate in RNP 10 airspace or on an RNP 10 route.

1.7 Flight crews are authorized to perform RNP 10 operations for the time authorized within the parameters established for their navigation system configuration.

2. AVIATION AUTHORITY FUNCTIONS

2.1 Checklist of documentation:

- a) RNP time requested for a specific route system or area of operation;
- b) airworthiness documentation;
- c) current operations specifications, if applicable;
- d) current letter of authorization, if applicable;
- e) copy of pertinent sections of the AFM;
- f) list of number and type of long-range navigation units (e.g. 3-Litton 92, INS);
- g) description of long-range navigation system integration;
- h) description of updating procedures, if used;
- i) review of training programme;
- j) RNP 10 operations issues;
- k) RNP 10 contingency procedures; and
- l) updating procedures and implications of the update on the navigation solution (if updating is planned).

2.2 Evaluate the operator’s long-range navigation system to determine the approval method to be used in accordance with:

- a) Method 1: if the operator has an AFM entry or other documentation from an aviation authority aircraft certification office granting certification approval for RNP 10 or better for a specific time period, then approval Method 1 will be used:
 - approve the operator for unlimited RNP 10 navigation if either one or both of the required long-range navigation systems is a GPS and the unit(s) are integral to the primary steering instrument of the mandatory flight crew; and
— if the navigation equipment does not incorporate GPS, approve the operator for the RNP value and time specified in the AFM;

b) Method 2: approve the operator for RNP 10 for 6.2 hours based upon the “/E” suffix (as used in the United States domestic flight plan) as defined in the AIM and qualifications that meet United States 14 CFR Part 121, Appendix G (or a State’s equivalent):

— determine from the operator whether approval of additional time will be needed; if “yes”, then a discussion of one of the extended time procedures will be required; and

c) Method 3: require that operational navigation performance data be presented if the operator cannot qualify for approval under either Method 1 or 2.

2.3 Additional considerations for granting approval:

when granting approval for either Method 1 or 2, determine whether the operator has updating procedures. If “yes”, then the procedures for their use must be contained in the training curriculum and crews must be knowledgeable of their use and their effect on the navigation solution. If “no”, then advise the operator that a data collection programme based on one of the following will be required prior to granting approval (eligibility group 3):

— sequential sampling based on Appendix 1 of United States FAA Order 8400.12A (as amended); or

— periodic data collection based upon a portable GPS being used for a baseline or data collection based upon the radial error determined from destination gate positions. This process is described in Appendix 6 of United States FAA Order 8400.12A (as amended).

2.4 Conduct a final approval meeting:

a) check all data required and discussed at the application meeting;

b) ensure that the documentation is consistent with the equipment actually installed in the aircraft;

c) check the training curriculum or the knowledge of the person accepting responsibility for the crew knowledge; and

d) if data collection was required, examine it closely. If any doubt exists as to its validity, have it examined by a navigation specialist.

— END —